国产色av,短篇公交车高h肉辣全集目录,一个人在线观看免费的视频完整版,最近日本mv字幕免费观看视频

首頁 > 文章中心 > 高層建筑結構設計論文

高層建筑結構設計論文

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇高層建筑結構設計論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

高層建筑結構設計論文

高層建筑結構設計論文范文第1篇

我國當前主要通過常微分方程求解器對高層建筑結構力學進行分析。高層建筑結構力學常微分方程求解器功能強大,自適應求解效果非常好,可以有效滿足對用戶進行預先解答,提高解答的精度,降低解答指定的誤差限。當前我國在高層建筑結構分析通過對常微分方程求解器的應用,有效實現了對高層建筑結構樓板變形時的動力計算、穩定計算和靜力計算,實現對數據的整體分析和處理。建筑人員通過使用常微分方程求解器的分析,有效降低了在進行高層建筑結構分析時的處理量,降低了高層建筑結構分析中的方程組數,有效提高運算效果,從本質上實現了對建筑結構的優化。

在對高層建筑結構常微分方程求解器進行深入研究的過程中,清華大學教授包世華和袁駟有效提高了常微分方程求解器的應用,實現了對常微分方程求解器的深化研究。袁駟教授利用有限元技術,對偏微分方程的半離散化進行控制,有效實現了對常微分方程組的求解,提高了對結構線性函數的應用。通過常微分方程求解器的直接求解,對有限元線進行實際應用,有效對一般力學問題進行計算,在很大程度上提高了一般力學問題的計算效果。而包世華教授對半解析-微分方程求解器方法進行分析深化,有效將半解析-微分方程求解器方法應用到高層建筑結構結構靜力、動力、穩定性的分析驗證中,提高了對高層建筑結構力學分析的效果。

2高層建筑結構彈塑性動力分析方法

高層建筑結構彈塑性動力分析方法在高層建筑結構力學分析中又被稱為時程法。高層建筑結構彈塑性動力分析方法主要是對地震波直接輸入結構,完成結構的彈塑性性能分析。這種方法要求結構力學分析人員建立專門結構彈塑性恢復性動力方程,通過逐步積分法實現對地震過程中速度、加速度、位移等的時程變化,完成對建筑結構的描述。高層建筑結構彈塑性動力分析方法對建筑結構在強震的作用下彈性及非彈性階段的內力變化進行深入研究,有效對高層建筑構件可能出現的損壞、開裂、屈服、倒塌進行分析,提高建筑結構力學的分析效果。當前在國內的高層建筑結構彈塑性動力分析方法主要輸入地震波為隨機人工地震波,結構模型的計算多采取層模型。除此之外,高層建筑結構彈塑性動力分析方法還加大了對樓板結構變形的分析,使用并列多質點計算模型進行計算,對高層建筑結構的基礎轉動和評議進行研究,有效提高了對土體、基礎及上部結構耦合振動的模擬效果。

近年來我國還高層建筑結構彈塑性動力分析方法中對扭轉振動進行分析,取得顯著進展。高層建筑結構彈塑性動力分析方法能夠有效對高層建筑結構中存在的薄弱環節進行分析,提高對結構延展性、變形的實際分析效果。高層建筑結構彈塑性動力分析方法預計的破壞形態與實際地震的破壞效果非常接近,有效對地震危害進行防護處理,提高了高層建筑結構的防震效果。但是當前對高層建筑結構彈塑性動力分析方法的整體看法不一。部分人員認為采取大型高速計算機對典型地震波進行分析;但是部分人員認為典型地震波本身不一定能代表真正的地震,因此在進行研究的過程中要對研究算法進行簡化,對近似方法進行研究。隨著高層建筑結構彈塑性動力分析方法的逐漸發展,越來越多國家在進行高層建筑結構力學分析的過程中開始對地震波根據實際情況進行選取,模擬效果大幅提高。

3基于最優化理論的結構分析方法

基于最優化理論的結構分析方法主要是通過數學上的最優化理論及計算機技術實現對高層建筑結構設計的一種新方法。基于最優化理論的結構分析方法有效實現了對結構設計的被動分析道主動設計的轉變,提高了高層建筑結構設計的靈活性,對設計具有非常好的促進效果。基于最優化理論的結構分析方法對空間的要求較為嚴格,設計過程中要保證以最小的質量產生最大的剛度。因此,設計人員要對框架剪力墻結構中的剪力墻進行充分分析,實現墻體的優化布置和數量選取,提高基于最優化理論的結構分力學析效果。基于最優化理論的結構分析方法中要求保證適度的剛度,對剛度要進行嚴格控制。尤其是在分析剪力墻與地震作用的時,要對剪力墻剛度進行優化設計,確保建立正確的最優化剛度模型,提高基于最優化理論的結構分析方法的模型實際應用效果。目前我國的基于最優化理論的結構分析方法發展還不全面,在進行單位建筑面積上剪力墻慣性矩度量指標設計的過程中還存在較多問題。我國的基于最優化理論的結構分析方法仍處於研究和發展階段。高層建筑結構力學分析人員要對基于最優化理論的結構分析方法中的數學模型進行深入研究,對剪力墻最優剛度進行有效分析,從本質上提高數據分析處理效果,拓寬基于最優化理論的結構分析方法的應用前景。

4基于分區廣義變分原理與分區混合有限元的分析方法

在進行分區的過程中,高層建筑結構力學分析人員要對有限元進行全面分型。有限元中雜交元和非協調元的發展在很大程度上促進了分區廣義變分原理的發展,為分區廣義變分原理奠定了堅實的理論基礎。清華大學龍馭球教授對分區廣義變分原理進行研究,實現了對分區廣義變分原理的深化。龍馭球教授的分區混合有限元法將分區廣義變分原理進行拓展,實現了繼位移法、雜交元法之后的改革和完善。分區混合有限元法對彈性體分類,對勢能區使用位移單元能量分析,將結點位移作為基本未知量。而余能區使用應力單元,將結構應力函數作為基本未知量,實現對能量項的交界面附加。分區混合有限元法在滿足位移和力的基礎上保證了位移的連續和收斂性,有效對總能量泛函駐值分區混合進行方程選取。分區混合有限元法適應性非常強,分區較為靈活,在很大程度上保證了函數的收斂性,對高層建筑結構力學的分析具有非常好的促進效果。

高層建筑結構設計論文范文第2篇

近年來,國家加大了對建筑行業的宏觀調控力度,明確規范了高層建筑物的安全使用要求,對高層建筑結構設計進行了更多的限制,主要體現在對高層建筑工程項目中可能存在的安全隱患的防控。例如:嚴格要求建筑結構設計中,建筑結構嵌固端的下層和上層感度比必須控制在規范要求范圍內。國家不斷出臺了新的建筑結構設計規范規則,并明確指出在建筑結構設計中,不能使用不規則的結構設計方案。高層建筑結構設計人員在實際的設計工作中,必須嚴格按照新規范進行設計,避免為高層建筑結構設計埋下安全隱患。

2抗震設計問題

抗震設計規范明確規定了抗震設計目標,并針對不同地區、不同重要性的建筑對抗震設防進行了合理分類。因此,在進行高層建筑結構設計時,必須要使結構能夠滿足延性要求。同時,在抗震設防中應當遵循多道設防原則。當第一道防線的抗側力構件在遭遇地震被破壞后,要能夠有第二道,甚至是第三道防線立即接替,使建筑物不至于倒塌。當高層建筑物在遭受地震后,重力荷載是導致建筑倒塌的直接原因。因此在進行高層建筑結構設計時,必須優先選擇輕質高強的原材料。在滿足強度和結構變形要求的前提下,綜合考慮經濟性因素,盡可能選用質量較輕的材料。高層建筑結構設計師要能夠與時俱進,積極應用成熟、可靠的現代化技術和新產品,不斷提高自身設計水平,為建設優質工程貢獻自己的一份力量,為企業爭取良好的經濟利益。在高層建筑結構設計中,利用結構自身的抗震性能來抵抗地震作用,是一種較為被動消極的抗震政策,建筑結構一旦發生破壞,造成的人員傷亡和經濟損失將會不可估量。因此,在進行高層建筑結構設計時,必須通過為結構施加控制裝置,加強結構減震控制。在地震來臨時,控制裝置和結構自身共同承受地震作用,通過二者的協調作用,能夠有效減輕地震反應。基礎隔離是結構減震控制的一種很好的方法,通過安裝隔震裝置系統形成隔震層,能夠有效延長結構周期,使結構本身處于延性工作狀態,有效吸收地震能量,減小結構主體的地震反應,避免房屋破壞甚至倒塌。

3建筑超高問題

建筑開發公司為了為自身謀取更多的利益,通過提高建筑高度來提高土地的利用率,雖然在很大程度上降低了工程建設項目成本,但也給高層建筑結構造成了超高問題,并存在很多私自在建筑物上增高的違反操作現象。我國部分城市處于地震高發區,在進行高層建筑結構設計時,設計師要充分根據不同地區的地質地貌情況,考慮當地地震發生的趨勢。建筑的超高問題嚴重影響了高層建筑結構的抗震效果,為建筑結構的安全使用埋下了隱患。近年來,國家逐步提高了對建筑物超高問題的重視程度,要求建筑結構設計完成后必須經過層層審批,通過后方可開工。這樣,在很大程度上避免了開工一段時間后又發現超高問題,有助于確保工程進度。同時,高層建筑施工是一次性的工程,中途返工會造成高額經濟損失,加強審批,有助于避免不必要的經濟損失,防患于未然。目前,我國對于高層建筑結構高度有了更加詳細的劃分,建筑設計人員應當在設計之前明確自己的結構高度分類,并嚴格按照相關規定進行設計,提高高層建筑結構質量安全。

4嵌固端設置問題

目前,大多數高層建筑物設有兩層或兩層以上的人防或者地下室。高層建筑物的人防及地下室的頂板上都要設置嵌固端。此時,高層建筑結構設計就要考慮嵌固端設置可能造成的問題。在進行結構計算時,要考慮嵌固端設計對計算參數的影響,全面考慮其可能造成影響的多種可能,有效協調高層建筑結構抗震縫的寬度及縫隙與嵌固端的位置,并將嵌固端的上層和下層對應的感度比值控制在規范要求的范圍內。此外,在進行高層建筑結構設計時,要為嵌固端樓板設計合理的位置。在進行嵌固端的設計時,要綜合考慮各方面因素,選擇最優的設計方案,盡可能避免其在高層建筑結構使用過程中出現安全問題。這樣,在確保結構安全的前提條件下,有助于促進建筑工程項目的順利完工。

5結語

高層建筑結構設計論文范文第3篇

關鍵詞:高層建筑;結構設計;剪力墻;超高;概念設計

1 高層建筑結構設計的基本特點

與單層或多層建筑的結構設計相比,高層建筑在結構設計中要考慮的因素較多,尤其是如果實現建筑整體美觀性和安全性的協調,逐漸成為廣大設計師關注的焦點問題。近年來,在國內各地區頻繁出現高層建筑建設質量問題,結構設計的不合理是其主要原因之一,設計師難以把握高層建筑結構設計的基本特點,由于設計方案的不合理性,最終導致建筑的整體質量難以保證。高層建筑結構設計的基本特點,主要表現在以下幾個方面:

1.1水平荷載具有決定性因素

由于高層建筑的層數一般在15層以上,其自身重量和使用荷載必然會導致結構中豎向構件產生一定的軸力,所以在高層建筑結構設計中必須注意水平荷載的問題,保證建筑的整體高度與彎矩值形成正比。對于水平荷載與建筑結構之間產生的傾覆力距,則應與建筑整體高度的二次方形成正比。

1.2結構延性至關重要

與多層建筑相比,高層建筑結構的柔性相對較大,特別是在地震或地基不規則沉降過程中出現結構變形的幾率較大,因此,為了進一步提升高層建筑結構在塑性變形后的變形能力,防止其出現倒塌的問題,必須采取有效的措施增強高層建筑結構的延性。

1.3側移是主要控制性指標

在高層建筑結構的設計中,側移是設計師必須考慮的關鍵性問題之一。隨著現代高層建筑層數的不斷增加,結構在水平荷載的強大作用下,其出現側向變形的幾率也無形中增加,所以一定要將高層建筑結構的側移控制在合理的范圍內。

2 高層建筑結構設計應注意的幾個問題

目前,國內在高層建筑結構設計中雖然積累了一定的經驗,并且積極吸取了國外的先進設計理念,但是對于相關問題的把握和控制仍然存在一定的缺陷,這是阻礙我國建筑行業整體設計水平發展的主要因素之一。結合國內高層建筑結構設計的現狀,應注意的問題主要有以下幾點:

2.1框架柱截面大小的選擇

對于框架柱而言,軸壓比越小在往復水平上荷載下的滯回曲線也會越豐滿,即耗能能力越大,延性就愈好。而對于柱凈高與截面高度的比值小于4的短柱,在往復水平荷載作用下其滯回曲線呈較瘦的反s形,耗能能力降低、延性較差,呈剪切破壞。

高層建筑的底部柱,由于對軸壓比值有要求, 因此往往會將柱截面取得很大,但是由于受到層高的限制就使得框架柱成為了短柱。在實際的結構設計時,要確定截柱面的大小要注意以下幾點:框架柱的截面首先必須滿足規范軸壓比的需要,從而為結構的豎向承載力和底板的抗沖切承載力提供保障。而對于形成的短柱,則可以通過增加體積配箍率或是沿著柱身增加箍筋達到提高延性的效果:采用鋼管混凝土柱、勁鋼混凝土柱或是高強混凝土柱;柱的軸壓比必須滿足規范限制,軸壓比過大則結構的延性無法得到保證,過小又會造成結構的經濟技術指標較差。

2.2短肢剪力墻的設置問題

在我國建設部組織編制的《高層建筑設計規范》中,對于短肢剪力墻作出了明確的定義,即墻肢截面的高厚比為5.8的墻被統稱為短肢剪力墻。根據相關建筑技術部門的研究和實驗,對于短肢剪力墻在高層建筑結構設計中的應用也提出了具體的要求,因此,在今后的高層建筑結構設計中,設計師應盡量減少或取消短肢剪力墻的設置,以免為建筑的后期設計和竣工質量檢驗造成麻煩。

2.3結構的超高問題

在高層建筑的結構設計中,超高問題是較為突出的,根據我國《建筑抗震規范》中的相關規定,必須對建筑的整體高度進行嚴格控制。我國高層建筑的限制高度一般分為:A級和B級兩個標準,對于高層建筑的處理措施與設計方法的要求也有所改變。在高層建筑的實際設計工作中,設計師應根據建筑類型合理確定其高度,并且在通過相關部門的審核后,方可組織施工。

3 加強高層建筑結構設計的措施

在我國高層建筑數量增多、規模擴大,以及工藝和技術要求不斷提高的背景下,在今后的高層建筑結構設計中,一定要不斷采取新的理念和方法,全面提高設計方案的合理性、可行性與經濟性,這也是促進我國建筑行業發展的先決條件。針對國內高層建筑結構設計的現狀,應采取一下加強措施:

3.1進行合理的概念設計

在國外的高層建筑結構設計中,概念設計較為流行,而國內則較少采取此方法。所謂的概念設計是指在通過科學的構想來完善設計工作,促進設計方案更趨合理化、人性化。在我國的高層建筑結構設計中,應用概念設計方法時,必須考慮到結構的平面布置與剛度宜,以保證高層建筑的平面布置簡單、規則,減少凸出或凹進等復雜結構。另外,在概念設計中盡量減少扭轉對于結構的危害性也是十分重要的,可以從以下兩方面入手:進一步增加結構自身抵抗扭轉的性能;盡量減少或控制因地震作用而引起的建筑結構扭轉問題。

3.2選擇合理的結構體系

總結國內的高層建筑工程實踐經驗不難發現:在高層建筑結構設計中,如果結構體系的選擇不合理,而僅是依靠所謂的先進理論和計算方法進行設計,難以保證建筑結構的安全性、經濟性與可靠性,而且會留下較多的安全和質量隱患。由此可見,在高層建筑結構設計中,選擇合理的結構體系是至關重要的,而且設計師應該重點分析的問題之一。目前, 國內的高層建筑中主要采用:抗震墻結構、框架結構、簡體結構、板柱一抗震墻結構、框架.抗震墻結構,以及部分框支抗震墻結構等,每一種結構體系都具有其自身的優點的缺點,適用的環境也有一定的差異,所以設計師一定要結合工程項目的實際要求進行合理的結構體系選型。

3.3科學進行計算

在高層建筑結構設計中,科學進行各類數據的計算是設計師必須掌握的專業技能。根據高層建筑結構的實際情況,設計師要選取相應的計算模型。在進行概念設計時,要注意簡化計算流程,以保證設計工作的時效性。目前,在國內高層建筑結構設計的計算中,各種專業的計算機軟件和工具已經得到了廣泛的應用,設計師僅需將各種實地測量數據輸入到系統中,就可以在短時間內獲取所需的各種專業數據,大大提高了設計師的工作效率和設計方案的準確性。

近年來, 我國高層建筑的建設有了迅猛的發展,而且成為促進國內建筑行業發展的重要建設項目。但是從高層建筑結構設計的整體質量而言,存在的弊端和問題相對較多,必須引起國家建筑主管部門和相關單位的高度重視。在未來的高層建筑結構設計中,廣大設計師一定積極運用先進的設計理念和方法,在提高相關數據計算精確度的基礎上,全面提高設計方案的質量,為工程項目的建設提供專業的工藝和技術依據。

參考文獻:

[1]張彥彬.試析高層建筑工程的轉換層結構設計[J].黑龍江科技信息,2011,(16):246.

高層建筑結構設計論文范文第4篇

關鍵詞:高層建筑;結構設計;抗震概念;應用

防震設計是高層建筑結構設計必不可少的一部分,并且地震是一種無法消除的自然災害。因此,高層建筑結構設計人員應采取科學、合理的措施來降低地震對高層建筑物的危害系數,以提高高層建筑物的穩定性,從而保證人們的生命和財產安全,這同時也是我國高層建筑物結構設計工藝不斷優化的必然結果。

1高層建筑結構設計中抗震概念概述

地震的發生是無規律的,因此做好高層建筑物的防震設計是十分必要的。實踐證明,只有利用科學、合理的設計措施,整體布局高層建筑的結構細節,才能降低地震對于高層建筑物的危害。一般抗震設計是從抗震值和抗震措施兩個方面進行的,其過程是:地震情況統計、數據分析、提出概念。抗震概念設計的主要內容就是保證高層建筑整體的穩固性和細節結構的抗震性。簡單地說,抗震概念設計就是基于工程抗震的基本理論和實際的抗震經驗總結出的工程抗震概念,是決定建筑物抗震能力的基礎。抗震概念設計中包含空間作用、非線性性質、材料時效、阻尼變化等多種不確定的因素。抗震概念設計的原則是建筑結構設計簡單性、剛度適宜性、勻稱性、整體性。例如在一些地震頻發的地區設計高層建筑時,應該考慮都高層建筑上下部分結構性質不同的問題。

2高層建筑架構設計中抗震概念設計的應用策略

2.1合理的場地

高層建筑物的建設地點也是保障建筑工程施工質量的關鍵因素。選擇合理的建筑施工場地,不僅可以減少企業的投入成本,還能提高建筑物的穩固性。因此,施工人員可以利用現代先進科技設施來選擇理想的地段。場地的選擇應當避開地震危險地段,如地震時會發生崩塌、地裂以及在高強度地震下容易發生地表錯位的場地。一般地震危險地段包括斷層區、坡度陡峭的山區、存在液化和夾層的坡地以及大面積采空的地區。如發生嚴重地震的四川北川地區,其區域特點是縣境內地形切割強烈,地形起伏大,相對高差超過1000m,溝谷谷坡一般大于25°,部分達40°~50°,甚至陡立。并且地貌類型以侵蝕構造山地、侵蝕溶蝕山地為主。另外在縣境內還存在一條斷裂帶。這也就是北川地區成為汶川地震重災區的原因,該地區的地震宏觀烈度達到了Ⅺ度。因此,建設高層建筑的重點就是選擇地勢開闊、平坦以及中硬場地土。如我國中部平原地區,其地勢平坦,并且屬于地震低發區。當然,如果無法避免區域限制,那么也可以選擇抗震性比較好的地區,如避免存在孤立山包的區域以及表面覆蓋層厚度較小的區域。總之,因地制宜,選擇合適的高層建筑建筑建設場地是保證高層建筑物穩定性的最佳途徑。

2.2合理布局建筑平面

建筑物的房屋布置和結構布置都是影響高層建筑物穩定性的重要因素。依據抗震的概念,合理布局能夠有效提高高層建筑物的抗震能力,延長建筑的使用年限。一般施工人員都會根據地震系數選擇適當的建筑物高度和寬度,使高層建筑的抗震能力達到最大值。建筑平面的布置可以從四個方面考慮:一是布置平面時,應當遵循簡單、對稱的結構特點,以減少偏心;二是應當保證質量和剛度變化均勻,避免樓層錯層問題;三是盡量設計合理的平面長度,且建筑物突出的長度也應該符合相關標準;四是盡量避免采用角部重疊的平面圖形以及細腰形平面圖形。如早前發生在墨西哥的地震,相關人員在地震發生后對房屋的結構進行了分析。據數據表明,建筑物剛度明顯不對稱會增加15%的地震破壞率,拐角形建筑會增加42%的地震破壞率,因此,高層建筑施工人員應該科學合理的設置建筑平面。此外,現澆鋼筋混凝土高層建筑適用高度的確定需要考慮地區的地震烈度,如高層建筑的抗震墻在烈度系數達到6的地區,其最高適宜高度為130米;在烈度系數為7的地區,最高適宜高度為120米。總之,合理的高層建筑物平面布局是保證高層建筑抗震能力的關鍵。

2.3合理的結構設計

高層建筑的結構設計不僅要滿足抗震要求,還要滿足經濟、功能齊全、施工技術等要求。在設計高層建筑結構時要考慮實際的場地環境和建筑物本身的建設標準。另外,結構的設計還應該滿足對稱性。總之,對于高層建筑的結構設計應該從各個方面綜合考慮。首先,高層建筑結構的設計需要考慮多種影響因素,除材料、施工、地基、防烈度等因素外,還要考慮經濟因素,之后才能確定建筑物結構類型。有利于防震的建筑平面設計包括方形、圓形、矩形、正六邊形、正八邊形等,不利于防震的建筑平面設計包括多塔形、錯層、樓板開口等。次外,如果建設的高層建筑屬于純框架高層建筑,那么設計人員應避免出現框架柱傾斜、樓體傾斜等問題。因為如果框架柱傾斜,一旦發生地震就會出現剪切破壞問題,造成高層建筑的嚴重損壞。其次,更為重要的是結構設計一定要遵循對稱原則,避免扭轉問題的出現。如果高層建筑結構采取對稱的結構,那么當發生地震時,其建筑物只會發生平移震動,建筑物各個部分的受力比較均勻,從而降低地震對高層建筑的破壞程度。

2.4設置多條防震線

設置防震線是為了提高高層建筑結構的抗震系數,提高建筑物體的穩固性。之所以設置多條防震線是因為建筑物中各個部分的結構和功能是不相同的,設計相應的反震線能整體提高高層建筑物的抗震能力。設置多條防震線的優勢在于如果發生地震時,第一道防線的抗側力構件在遭到破壞之后,其地震的沖擊力和破壞力就會減弱。這樣當地震經過多道防震線之后,地震的破壞力就會降到最低。如尼加拉瓜的馬拉瓜市的美洲銀行大廈,就是應用多道防震線的典型建筑,其大樓采用的是11.6米*11.6米的鋼筋混凝土芯筒作為主要的抗震和防風構件,并且該芯筒又由四個小芯筒組成。相關數據顯示,該高層建筑對于地震的反應用數據表示是,當發生地震時,其四個小芯筒的結構底部地震剪力值達到了27000KN,結構底部地震傾覆力矩達到了370000KN•m,其結構頂點位移值為120毫米。總而言之,設置多條防震線提高高層建筑物防震能力的重要手段。尤其是在社會經濟快速發展的背景下,重視抗震概念的設計是延長高層建筑物使用年限,提高我國建筑工藝水平的關鍵。

3總結

綜上所述,隨著我國經濟水平的不斷增長,高層建筑物的數量也在迅速增長。因此,做好高層建筑結構設計中的抗震概念設計就凸顯的尤為重要。將抗震概念設計應用到高層建筑結構設計中,不僅要考慮高層建筑結構施工的各個方面,還要考慮各種外界因素以及抗震標準。這樣才能提高高層建筑的穩定性,降低地震給高層建筑造成的危害程度,從而保證人們生命和財產的安全。

作者:周寶學 單位:浙江華坤建筑設計院有限公司

參考文獻:

[1]張念華.抗震概念設計在高層建筑結構設計中的應用[J].中國新技術新產品,2014,04∶78-79.

[2]李國珍.高層建筑結構設計中抗震概念設計的應用淺析[J].江西建材,2014,02∶29.

高層建筑結構設計論文范文第5篇

關鍵詞:高層建筑 梁式轉換層結構 設計

1高層建筑結構的相關問題

1.1 結構的超高問題:在抗震規范和高規范中,對結構的總高度有著嚴格的限制,尤其是新規范中針對以前的超高問題,除了將原來的限制高度設定為A級高度以為,增加了B級高度,處理措施與設計方法都有較大改變。在實際工程設計中,出現過由于結構類型的變更而忽略該問題,導致施工圖審查時未予通過,必須重新進行設計或需要開專家會議進行論證等工作的情況,對工程工期、造價等整體規劃的影響相當巨大。

1.2 短肢剪力墻的設置問題:在新規范中,對墻肢截面高厚比為5~8的墻定義為短肢剪力墻,且根據實驗數據和實際經驗,對短肢剪力墻在高層建筑中的應用增加了相當多的限制,因此,在高層建筑設計中,結構工程師應盡可能少采用或不用短肢剪力墻,以避免給后期設計工作增加不必要的麻煩。

1.3 嵌固端的設置問題:由于高層建筑一般都帶有二層或二層以上的地下室和人防,嵌固端有可能設置在地下室頂板,也有可能設置在人防頂板等位置,因此,在這個問題上,結構設計工程師往往忽視了由嵌固端的設置帶來的一系列需要注意的方面,如:嵌固端樓板的設計、嵌固端上下層剛度比的限制、嵌固端上下層抗震等級的一致性、在結構整體計算時嵌的設置、結構抗震縫設置與嵌固端位置的協調等問題,而忽略其中任何一個方面都有可能導致后期設計工作的大量修改或埋下安全隱患。

2轉換層的結構設計原則

2.1轉換層設計原則

2.1.1轉換層的豎向布置

轉換結構可根據其建筑功能和結構傳力的需要,沿高層建筑高度方向一處或多處靈活布置;也可根據建筑功能的要求,在樓層局部布置轉換層,且自身的這個空間既可作為正常使用樓層,也可作技術設備層,但應保證轉換層有足夠的剛度,以防止沿豎向剛度過于懸殊。對大底盤多塔樓的商住建筑,塔樓的轉換層宜設置在裙房的屋面層,并加大屋面梁、板尺寸和厚度,以避免中間出現剛度特別小的樓層,減小震害。對部分框支剪力墻高層建筑結構,其轉換層的位置,7度區不宜超過第5層,8度區不宜超過第3層。轉換層位置超過上述規定時,應作專門研究并采取有效措施。 2.1.2轉換層的結構布置

研究得出,底部轉換層位置越高,轉換層上、下剛度突變越大,轉換層上、下內力傳遞途徑的突變就越加劇;此外,轉換層位置越高,落地剪力墻或簡體易出現受彎裂縫,從而使框支柱的內力增大,轉換層上部附近的墻體易于破壞。總之,轉換層位置越高對抗震越不利。

底部帶轉換層結構,轉換層上部的部分豎向構件不能直接連續貫通落地,因此,必須設置安全可靠的轉換構件。按現有的工程經驗和研究結果,轉換構件可采用轉換大梁、斜撐、箱形結構以及厚板等形式。由于轉換厚板在地震區使用經驗較少,可在非地震區和6度抗震設計時采用,對于大空間地下室,因周圍有約束作用,地震反應小于地面以上的框支結構,故7,8度抗震設計時的地下室可采用厚板轉換層。

2.1.3轉換層的抗震設計

為保證設計的安全性,規定部分框支剪力墻結構轉換層的位置設置在3層以上時,其框支柱、剪力墻底部加強部位的抗震等級宜按高規規定提高一級采用,提高其抗震構造措施,而對于底部帶轉換層的框架一核心簡結構和為密柱框架的簡中簡結構的抗震等級不必提高。對轉換層的轉換構件水平地震作用的計算內力需調整增大;8度抗震設計時,還應考慮豎向地震作用的影響。

3梁式轉換層結構的設計

由框支主梁承托轉換次梁及次梁上的剪刀墻,其傳力途徑多次轉換,受力復雜。框支主梁除承受其上部剪力墻的作用外,還需要承受梁傳給的剪力,扭矩和彎矩,框支主梁易受剪破壞。對于有抗震設防要求的建筑,為了改善結構的受力性能,提高其抗震能力,在進行結構平面布置時,可以將一部分剪力墻落地,并貫通至基礎,做成落地剪力墻與框支墻與剪力墻協同工作的受力體系。

3.1轉換梁的設計

轉換梁的截面尺寸一般宜由剪壓比計算確定,以避免脆性破壞和具有合適的含箍率。轉換梁不宜開洞,若需要開洞,洞口宜位于梁中和軸附近。洞口上、下弦桿必須采取加強措施,箍筋要加密,以增強其抗剪能力。上、下弦桿箍筋計算時宜將剪力設計值乘放大系數1.2。當洞口內力較大時,可采用型鋼構件來加強。

轉換梁的混凝土強度等級不應低于C30。

3.2框支柱的設計

框支柱截面尺寸一般系由其軸壓比計算確定。地震作用下框支柱內力需調整:抗震設計時,框支柱的柱頂彎矩應乘以放大系數,并按放大后的彎矩設計值進行配筋;剪力調整:框支柱承受的地震剪力標準值應按下列規定采用:框支柱的數目不多于1 0根時,當框支層為1-2層時,每層第根柱承受的剪力應至少取基底剪力的2%;當框支層為3層及3層以上時,各層每根柱所受的剪力應至少取基底剪力的3%;框支柱的數目多于10根時,當框支層為l-2層時,每層每根柱承受的剪力之和應取基底剪力的20%;當框支層為3層及3層以上時,每層框支柱承受剪力之和應取基底剪力的30%;框支柱剪力調整后,應相應調整框支柱的彎矩及柱端梁的剪力、彎矩,框支柱軸力可不調整。

4設計實例工程

4.1工程概況

某綜合大廈,總建筑面積為28000m2,地下室1層,地上22層。其中1~4層為商業樓層,1層層高是5.1m,2~4層層高均是4.2m,5~22層為住宅,層高均為3m。 4層設置結構轉換層兼設備層,轉換層以上為住宅樓(純剪力墻結構),以下為框架―剪力墻結構。該建筑位于六度抗震區,建筑場地為Ⅱ類。

4.2梁式轉換層結構的設計要點

4.2.1結構平面布局為了提高其抗震能力,改善結構的受力性能,對于有抗震設防要求的建筑,為了改善結構的受力性能,提高其抗震能力,在對有抗震設防要求的建筑進行結構平面布置時,可以將一部分剪力墻落地,并貫通至基礎,做成框支墻與落地剪力墻協同工作的受力體系。

該工程上部為純剪力墻結構,底部為體型規則、簡單的框架――剪力墻結構。

南北向剛度中心與質量中心偏差不超過2米,東西向完全對稱,為了增強抗扭效果,除核心筒外的其余剪力墻應盡量沿周邊均勻、分散布置。

4.2.2結構豎向布置高層建筑的豎向體型宜規則、均勻,避免有過大的外挑和內收,可根據其建筑功能和結構傳力的需要,沿高層建筑高度方向一處或多處靈活布置;也可以按照建筑功能需要,在樓層局部布置轉換層。對于框支剪力墻結構高層建筑7度區不宜在第五層以上設置轉換層,8度區不宜在第三層以上設置轉換層。抗震設計的高層建筑結構,其樓層側向剛度不宜小于相鄰上部樓層側向剛度的70%或其上相鄰三層側向剛度平均值的80%。

該工程的豎向布置設計遵循“強化下部,弱化上部”的原則。盡量減少轉換層上部剪力墻數目,控制剪力墻厚度。轉換層以下剪力墻中,核心筒部分的厚度取為400mm,其余部分的厚度取為350mm。為了增強底部剛度,在底部增設部分剪力墻,且還要讓核心筒兩側各有一片剪力墻落地。可選用C50混凝土,以提高底部柱、墻混凝土強度等級。

4.2.3抗震等級的確定抗震等級是根據建筑物設防烈度和建筑物使用功能的重要性確定的,根據《建筑抗震設防分類標準》(GB50223)的規定,建筑工程分為四個抗震設防類別:特殊設防類(甲類)、重點設防類(乙類)、標準設防類(丙類)、適度設防類(丁類)。當剪力墻轉換層結構設置在三層以上時,為了保證設計的安全性,框支柱、剪力墻底部加強部位的抗震等級應提高一級。另外,在8度抗震設計時,還應考慮豎向地震作用的影響。

主站蜘蛛池模板: 汝阳县| 深水埗区| 五峰| 绩溪县| 满城县| 南城县| 柘城县| 盐亭县| 金坛市| 九台市| 克山县| 保德县| 廊坊市| 吴桥县| 德庆县| 洪江市| 高密市| 托克托县| 基隆市| 龙山县| 汤原县| 洪洞县| 临洮县| 东兰县| 安陆市| 平原县| 灵璧县| 武安市| 遂宁市| 门头沟区| 聂荣县| 顺昌县| 武清区| 德庆县| 镇原县| 乌苏市| 阿鲁科尔沁旗| 德昌县| 噶尔县| 政和县| 宁城县|