前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇納米科技論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
鑒于以上缺陷,當前對于牙科復合樹脂的改良主要是將納米材料作為無機填料,或用納米級材料修飾微米級填料,再加入復合樹脂中,以改良樹脂或使其具備新的性能或兼而有之。
納米填料的種類
牙科復合樹脂的填料絕非單一種類、單一粒徑的材料,而是具有一定分布梯度,且不同種類粒子相互配合的系統。牙科復合樹脂所含的填料能增加機械強度,降低熱膨脹系數和聚合熱,其粒度、粒度分布、折光指數、所占體積百分比、X線阻射性及硬度、強度等都會對材料的性能及臨床表現產生影響。目前,顆粒型陶瓷粉或玻璃粉是主要的填料類型,纖維(晶須)填料的研究和應用也有報道,但相比前者較少。應用理化性能更加優良的填料來增強機械性能是發展的方向。已用于增強牙科復合樹脂的納米顆粒包括納米二氧化硅[1]、納米金剛石[2~4]、納米氧化鋯[5]、納米氮化硅[6]、納米羥基磷灰石[7],納米氧化鈦[8]、納米三氧化二鋁[9]等。這類納米填料的研究較多,且大多數牙科產品廠家都有自己品牌的納米樹脂問世。納米纖維增強如納米碳管、短纖維和晶須是目前許多學者所提出的復合樹脂填料的新成員,都被用于牙科復合樹脂的增強和性能改善,但基本都處于基礎研究之中,而尚未應用于臨床階段。這里所講的納米纖維增強復合樹脂,是指以納米纖維為另一類填料與顆粒填料共同增強的口腔充填用復合樹脂材料,所以這類材料中含顆粒與纖維兩種填料。口腔臨床中使用的還有一類單純使用的纖維增強樹脂基(多為環氧樹脂基)材料,典型的產品為牙體加強用的纖維樁。文章主要討論前者目前在口腔中的研究現狀。有學者為了更加明確研究目的和可能機理,也會以環氧樹脂為基體或只加入纖維填料進行研究。碳化硅晶須和氮化硅晶須是近年來研究較多的用于牙科復合樹脂的晶須種類。其他增強牙科復合樹脂表面硬度和斷裂強度的纖維(晶須)包括氧化鋅晶須、鈦酸鉀晶須、硅酸鹽晶須、硼酸鋁晶須、尼龍纖維、碳納米管等。
納米技術降低牙科復合樹脂的聚合收縮
Condon等用不含甲基丙烯酸功能化的硅烷代替含有甲基丙烯酸功能化的硅烷對二氧化硅納米顆粒表面進行處理,獲得無粘接性的納米顆粒將其添加到復合樹脂中,發現其具有與氣孔相似的效果,分布于樹脂基質中的納米填料通過局部塑性形成應力釋放點,可以有效地降低聚合收縮[10]。Condon在另外的研究中用非粘接性的納米填料、粘接性的納米填料和無被膜填料來降低聚合應力。研究表明,納米填料添加到雜化型復合樹脂可以有效降低聚合應力(降低31%),在一定的體積含量水平(10%),非粘接性納米填料具有更好的降低應力作用,在只含有納米填料的復合樹脂,亦具有相同的效果[11]。八面的倍半硅氧烷,是具有直徑0.53nm的納米籠結構,是一個輕量級、高性能的混合材料,其結構通式為(RSiO1.5)8。SSQ聚合物顯示出優良的介電和光學性質,并已廣泛應用,如在應用程序中的光致抗蝕劑、耐磨涂層、液晶顯示元件、電子電路板的絕緣涂層和光纖涂料等。SohMS等將SSQ加入復合樹脂中制成符合材料,SSQ可以顯著降低樹脂的聚合收縮量,并同時增加樹脂的硬度和彈性模量[12]。Garoushi等將半互穿聚合物網絡加入由玻璃纖維增強的復合樹脂,發現復合物的聚合收縮率下降[13]。此后,又將納米SiO2顆粒加入上述復合物中,除了發現加入納米粒子后可使聚合收縮降低外,他們還發現聚合收縮的降低與納米粒子的添加量和聚合溫度相關[14]。
添加納米材料增強復合樹脂的抗菌性能
體內外實驗表明,復合樹脂比其他充填材料更易引起菌斑沉積,因而更易引起繼發齲。繼發齲也是臨床中復合樹脂充填失敗的重要原因之一。因此,如果能將抗菌劑加入復合樹脂中,使其具有緩和持久的抗菌性能,將非常有利于其性能的提高。BeythN等將季銨鹽聚乙烯納米粒子以低濃度(1%)添加到復合樹脂中,發現在不影響其機械性能的基礎上可以保持1月以上的抗菌性能[15]。Jia等將Ag+、Ag+/Zn2+吸附到納米SiO2表面,添加到復合樹脂中,發現對大腸桿菌和S.糞菌都具有良好的抗菌性能,而且后者的效果更好,抗菌效果隨接觸時間延長和添加劑量增加而增強[16]。Xu等將熔附了納米硅顆粒的晶須和納米二鈣或四鈣磷酸鹽加入牙科復合樹脂中已達到自修復的目的[17,18]。四針狀氧化鋅晶須具有抗菌的作用。宋欣等將四針狀氧化鋅晶須加入復合樹脂中,發現其在提高樹脂機械性能的同時也能賦予復合樹脂材料較強的抗菌作用,是制備抗菌性復合樹脂的較優選擇[19]。Niu等也將其加入復合樹脂中,以使復合樹脂獲得抗菌性能和增強的機械性能[20]。Chae等將納米銀顆粒加入聚丙烯腈中并用電紡技術制成納米纖維,以使所制備的纖維具有抗菌性能[21]。
納米技術對牙科復合樹脂機械性能的改善
1納米顆粒增強牙科復合樹脂
鐘玉修、倪龍興等將納米金剛石作為填料加入復合樹脂中,并對其性能進行了一系列的研究,認為適當比例的金剛石填料可以提高復合樹脂的機械性能[2,3]。胡曉剛等將納米金剛石用硅烷偶聯劑進行表面改性后添加到復合樹脂中,發現改性金剛石的增強作用明顯優于未經改性的金剛石,同時金剛石的加入也改善了樹脂的韌性[4]。王君等將納米氮化硅加入復合樹脂并用紫外光照進行固化處理,發現納米氮化硅含量為1%時,體積收縮率僅為4.92%,而拉伸強度增加了近100%[6]。王云等將經過硅烷偶聯劑KH-570進行表面處理后的納米羥基磷灰石加入樹脂基質中,研制出能夠達到臨床要求的修復性納米羥基磷灰石復合材料,并檢測其機械物理強度[7]。筆者研究組曾將納米TiO2粒子在表面處理后加入復合樹脂中,制備納米復合樹脂,并根據國際標準化組織標準測試其力學性能,發現表面處理增強了納米TiO2與復合樹脂基質的相容性,添加表面處理后的納米TiO2粒子對樹脂起到增強增韌作用[8]。目前各大牙科產品廠商幾乎都研制出自己品牌的納米樹脂,所加入的納米級填料以納米二氧化硅為主,如3MFiltekSupreme系列、Dentsply的ceramX、Heraeus的VenusDiamond系列、Kerr的HerculitePrécis、Bisco的Reflexion、Pentron的ArtisterNanoComposite。但也有例外的,如IvoclarVivadent的IPSEmpressDirect用的是納米氟化鐿。這些經過納米技術改良的復合樹脂,廠家都宣稱具有更好的強度、耐磨性、可拋光性、更低的聚合收縮率以及更好的美學性能。
2納米纖維(晶須)增強牙科復合樹脂
氮化硅和碳化硅被選中是因為和大多數纖維相比,其體積小,長徑比大,可以更均勻地與樹脂混合,而且其抗拉強度極高。Xu等自1999年起對晶須增韌牙科復合樹脂進行了一系列的研究。該研究組曾將硅石納米粒子熔附到碳化硅陶瓷晶須上,以增強口腔復合樹脂的強度,硅石納米粒子通過增加晶須表面積和粗糙度來加強晶須與樹脂基質的結合[22]。他們還發現晶須與硅石粒子質量比為2︰1,樹脂的強度明顯高于單純添加硅石的納米粒子,且樹脂的彈性模量和硬度隨晶須與硅石粒子比例的增高而增高,同時樹脂的脆性降低,還發現少量添加晶須就能夠大幅度提高斷裂強度[23]。相比于較為昂貴的氮化硅和碳化硅等高品質晶須,鈦酸鉀晶須雖然在強度上有一定的差異,但其價格低廉,在工業上研究也較多[24],因此也有學者將鈦酸鉀晶須用于牙科復合樹脂的增強[25]。硼酸鋁晶須性價比高,顏色為白色,適于用做復合樹脂的增強材料,較顏色深的碳化硅和氮化硅晶須更易于光照固化,適用于臨床[26]。王蓉等比較了不同晶須熔附納米粒子對環氧樹脂力學性能的影響,結果表明:硼酸鋁晶須熔附納米Si02增強作用最佳。但是由于硼酸鋁晶須與納米Si02化學相似性差,因此僅通過高溫燒結,兩者熔附效果不理想[27]。Zhang等將羥基磷灰石(hydroxyapatite,HA)晶須添加到牙科復合樹脂,發現硅烷處理后HA晶須能夠提高樹脂的彈性模量和折裂韌性值[28]。使用更好的纖維制備方法以得到質量更好的纖維,也是提高纖維增韌樹脂效果的方法之一。目前,使用靜電紡絲技術制備納米纖維材料已成為近十幾年來世界材料科學技術領域最重要的學術與技術活動之一。靜電紡絲以其制造裝置簡單、紡絲成本低廉、可紡物質種類繁多、工藝可控等優點,已成為有效制備納米纖維材料的主要途徑之一。靜電紡絲技術已經制備了種類豐富的納米纖維,包括有機、有機/無機復合和無機納米纖維。應用靜電紡絲技術已經成功地制備出了結構多樣的納米纖維材料。通過不同的制備方法,如改變噴頭結構、控制實驗條件等,可以獲得實心、空心、核-殼結構的超細纖維或是蜘蛛網狀結構的二維纖維膜;通過設計不同的收集裝置,可以獲得單根纖維、纖維束、高度取向纖維或無規取向纖維膜等。電紡纖維是連續的長纖維,可以發揮橋聯增韌的作用。尼龍纖維韌性遠遠超過無機填料,并具有規律的圓柱形狀。已有關于用電紡方法制備尼龍纖維并用其增強樹脂的報道。Fong等將電紡尼龍纖維加入BisGMA/TEGDMA基牙科樹脂中,并檢測其機械性能,發現復合材料的彎曲強度、彈性模量和斷裂強度都有所增強[29]。但是,為了更加增強尼龍晶須,Tian等將納米級硅酸鹽晶須加入尼龍纖維并使其沿纖維長徑排列,將得到的纖維填料用樹脂單體處理后再研磨后以不同比例加入樹脂中,發現少量添加纖維就可以大幅度提高樹脂的機械性能[30]。此后,同一研究組還將納米硅酸鹽晶須以不同比例直接加入復合樹脂中[31],也發現少量添加未經過表面處理的晶須時可以提高樹脂的機械性能。也有一些由靜電紡織得到核殼納米聚合物纖維的報道,如聚甲基丙烯酸酯-聚丙烯晴,聚甲基丙烯酸酯-聚苯乙烯,聚丁二烯-聚苯乙烯,尼龍-聚甲基丙烯酸酯(nylon-PMMA)纖維[32~36]。纖維核殼結構的設計目的是讓纖維具有一個高強度核心,而其外殼則是可以與樹脂通過形成化學鍵或形成互穿網絡結構提供良好的粘結性,使最終形成的納米復合材料具備更優良的機械性能。其中PMMA-PAN被用于增加牙科復合樹脂的機械性能[37,38]。筆者研究組曾將單壁碳納米管經過短切和表面處理后包裹上納米二氧化硅顆粒,再添加到復合樹脂中,制成納米復合樹脂,并檢測其機械強度,發現經過處理的SWCNTs在樹脂基質中呈良好的單分散狀,且制成的納米復合樹脂的強度與對照組相比,其增高的幅度具有統計學意義[39]。但從這個研究中也發現了碳納米管用于牙科美學修復所存在的問題,那就是碳管的顏色問題。盡管被納米二氧化硅包裹后才加入樹脂中,且添加量不高,但添加碳管后的樹脂仍表現為灰黑色,與牙齒顏色相差較大。這說明,至少在目前這種處理方式下,雖然碳管機械性能很好,但不太適合用于牙科復合樹脂的改良。這也促使我們尋找其他性能好、顏色也更接近齒色的納米管用于復合樹脂的改良。添加新型填料后的復合材料可能會更強更硬,但同時也降低了它們的透光性和光固化的效能,因而要求其具備自固化或熱固化的能力。有學者將納米Al2O3晶須加入牙科樹脂基托中以增強其熱傳導性[40],不過,熱傳導性的增強對于充填性樹脂來說不適宜,因為會導致對牙髓神經的刺激。納米結構的鈦管也是很有前景一種晶須填料。Khaleda等已將其用于PMMA、骨水門汀和流體樹脂的增強[41]。有學者對兩種玻璃纖維增韌的復合樹脂(NuliteF和Alert,增強體為微米級玻璃纖維)充填體做了為期6年的臨床隨訪[42],發現充填失敗的主要原因是繼發齲和充填體(即復合樹脂)或牙體的斷裂。根據他們得到的結果判斷,Alert達到了美國牙科協會的標準,而NuliteF沒有達到。纖維增強樹脂復合材料與其他混合樹脂復合材料相比,其體外研究顯示了極高的電子模量和斷裂韌性比,但是其表面粗糙度也增加了。添加到樹脂基質中的纖維需要控制方向、大小和其他特征,以及其排列位置和方向定位的可重復性。然而,目前這些仍是該領域的重大挑戰。也有一些學者嘗試用了一些方法,如原位聚合或預聚合,使纖維能在樹脂基質中定向分布。Koziol等使用原位聚合的方法實現了在聚苯乙烯中碳納米管的定向排列[43]。
一、各國競相出臺納米科技發展戰略和計劃
由于納米技術對國家未來經濟、社會發展及國防安全具有重要意義,世界各國(地區)紛紛將納米技術的研發作為21世紀技術創新的主要驅動器,相繼制定了發展戰略和計劃,以指導和推進本國納米科技的發展。目前,世界上已有50多個國家制定了國家級的納米技術計劃。一些國家雖然沒有專項的納米技術計劃,但其他計劃中也往往包含了納米技術相關的研發。
(1)發達國家和地區雄心勃勃
為了搶占納米科技的先機,美國早在2000年就率先制定了國家級的納米技術計劃(NNI),其宗旨是整合聯邦各機構的力量,加強其在開展納米尺度的科學、工程和技術開發工作方面的協調。2003年11月,美國國會又通過了《21世紀納米技術研究開發法案》,這標志著納米技術已成為聯邦的重大研發計劃,從基礎研究、應用研究到研究中心、基礎設施的建立以及人才的培養等全面展開。
日本政府將納米技術視為“日本經濟復興”的關鍵。第二期科學技術基本計劃將生命科學、信息通信、環境技術和納米技術作為4大重點研發領域,并制定了多項措施確保這些領域所需戰略資源(人才、資金、設備)的落實。之后,日本科技界較為徹底地貫徹了這一方針,積極推進從基礎性到實用性的研發,同時跨省廳重點推進能有效促進經濟發展和加強國際競爭力的研發。
歐盟在2002—2007年實施的第六個框架計劃也對納米技術給予了空前的重視。該計劃將納米技術作為一個最優先的領域,有13億歐元專門用于納米技術和納米科學、以知識為基礎的多功能材料、新生產工藝和設備等方面的研究。歐盟委員會還力圖制定歐洲的納米技術戰略,目前,已確定了促進歐洲納米技術發展的5個關鍵措施:增加研發投入,形成勢頭;加強研發基礎設施;從質和量方面擴大人才資源;重視工業創新,將知識轉化為產品和服務;考慮社會因素,趨利避險。另外,包括德國、法國、愛爾蘭和英國在內的多數歐盟國家還制定了各自的納米技術研發計劃。
(2)新興工業化經濟體瞄準先機
意識到納米技術將會給人類社會帶來巨大的影響,韓國、中國臺灣等新興工業化經濟體,為了保持競爭優勢,也紛紛制定納米科技發展戰略。韓國政府2001年制定了《促進納米技術10年計劃》,2002年頒布了新的《促進納米技術開發法》,隨后的2003年又頒布了《納米技術開發實施規則》。韓國政府的政策目標是融合信息技術、生物技術和納米技術3個主要技術領域,以提升前沿技術和基礎技術的水平;到2010年10年計劃結束時,韓國納米技術研發要達到與美國和日本等領先國家的水平,進入世界前5位的行列。
中國臺灣自1999年開始,相繼制定了《納米材料尖端研究計劃》、《納米科技研究計劃》,這些計劃以人才和核心設施建設為基礎,以追求“學術卓越”和“納米科技產業化”為目標,意在引領臺灣知識經濟的發展,建立產業競爭優勢。
(3)發展中大國奮力趕超
綜合國力和科技實力較強的發展中國家為了迎頭趕上發達國家納米科技發展的勢頭,也制定了自己的納米科技發展戰略。中國政府在2001年7月就了《國家納米科技發展綱要》,并先后建立了國家納米科技指導協調委員會、國家納米科學中心和納米技術專門委員會。目前正在制定中的國家中長期科技發展綱要將明確中國納米科技發展的路線圖,確定中國在目前和中長期的研發任務,以便在國家層面上進行指導與協調,集中力量、發揮優勢,爭取在幾個方面取得重要突破。鑒于未來最有可能的技術浪潮是納米技術,南非科技部正在制定一項國家納米技術戰略,可望在2005年度執行。印度政府也通過加大對從事材料科學研究的科研機構和項目的支持力度,加強材料科學中具有廣泛應用前景的納米技術的研究和開發。
二、納米科技研發投入一路攀升
納米科技已在國際間形成研發熱潮,現在無論是富裕的工業化大國還是渴望富裕的工業化中國家,都在對納米科學、技術與工程投入巨額資金,而且投資迅速增加。據歐盟2004年5月的一份報告稱,在過去10年里,世界公共投資從1997年的約4億歐元增加到了目前的30億歐元以上。私人的納米技術研究資金估計為20億歐元。這說明,全球對納米技術研發的年投資已達50億歐元。
美國的公共納米技術投資最多。在過去4年內,聯邦政府的納米技術研發經費從2000年的2.2億美元增加到2003年的7.5億美元,2005年將增加到9.82億美元。更重要的是,根據《21世紀納米技術研究開發法》,在2005~2008財年聯邦政府將對納米技術計劃投入37億美元,而且這還不包括國防部及其他部門將用于納米研發的經費。
日本目前是僅次于美國的第二大納米技術投資國。日本早在20世紀80年代就開始支持納米科學研究,近年來納米科技投入迅速增長,從2001年的4億美元激增至2003年的近8億美元,而2004年還將增長20%。
在歐洲,根據第六個框架計劃,歐盟對納米技術的資助每年約達7.5億美元,有些人估計可達9.15億美元。另有一些人估計,歐盟各國和歐盟對納米研究的總投資可能兩倍于美國,甚至更高。
中國期望今后5年內中央政府的納米技術研究支出達到2.4億美元左右;另外,地方政府也將支出2.4億~3.6億美元。中國臺灣計劃從2002~2007年在納米技術相關領域中投資6億美元,每年穩中有增,平均每年達1億美元。韓國每年的納米技術投入預計約為1.45億美元,而新加坡則達3.7億美元左右。
就納米科技人均公共支出而言,歐盟25國為2.4歐元,美國為3.7歐元,日本為6.2歐元。按照計劃,美國2006年的納米技術研發公共投資增加到人均5歐元,日本2004年增加到8歐元,因此歐盟與美日之間的差距有增大之勢。公共納米投資占GDP的比例是:歐盟為0.01%,美國為0.01%,日本為0.02%。
另外,據致力于納米技術行業研究的美國魯克斯資訊公司2004年的一份年度報告稱,很多私營企業對納米技術的投資也快速增加。美國的公司在這一領域的投入約為17億美元,占全球私營機構38億美元納米技術投資的46%。亞洲的企業將投資14億美元,占36%。歐洲的私營機構將投資6.5億美元,占17%。由于投資的快速增長,納米技術的創新時代必將到來。
三、世界各國納米科技發展各有千秋
各納米科技強國比較而言,美國雖具有一定的優勢,但現在尚無確定的贏家和輸家。
(1)在納米科技論文方面日、德、中三國不相上下
根據中國科技信息研究所進行的納米論文統計結果,2000—2002年,共有40370篇納米研究論文被《2000—2002年科學引文索引(SCI)》收錄。納米研究論文數量逐年增長,且增長幅度較大,2001年和2002年的增長率分別達到了30.22%和18.26%。
2000—2002年納米研究論文,美國以較大的優勢領先于其他國家,3年累計論文數超過10000篇,幾乎占全部論文產出的30%。日本(12.76%)、德國(11.28%)、中國(10.64%)和法國(7.89%)位居其后,它們各自的論文總數都超過了3000篇。而且以上5國2000—2002年每年的納米論文產出大都超過了1000篇,是納米研究最活躍的國家,也是納米研究實力最強的國家。中國的增長幅度最為突出,2000年中國納米論文比例還落后德國2個多百分點,到2002年已經超過德國,位居世界第三位,與日本接近。
在上述5國之后,英國、俄羅斯、意大利、韓國、西班牙發表的論文數也較多,各國3年累計論文總數都超過了1000篇,且每年的論文數排位都可以進入前10名。這5個國家可以列為納米研究較活躍的國家。
另外,如果歐盟各國作為一個整體,其論文量則超過36%,高于美國的29.46%。
(2)在申請納米技術發明專利方面美國獨占鰲頭
據統計:美國專利商標局2000—2002年共受理2236項關于納米技術的專利。其中最多的國家是美國(1454項),其次是日本(368項)和德國(118項)。由于專利數據來源美國專利商標局,所以美國的專利數量非常多,所占比例超過了60%。日本和德國分別以16.46%和5.28%的比例列在第二位和第三位。英國、韓國、加拿大、法國和中國臺灣的專利數也較多,所占比例都超過了1%。
專利反映了研究成果實用化的能力。多數國家納米論文數與專利數所占比例的反差較大,在論文數最多的20個國家和地區中,專利數所占比例超過論文數所占比例的國家和地區只有美國、日本和中國臺灣。這說明,很多國家和地區在納米技術研究上具備一定的實力,但比較側重于基礎研究,而實用化能力較弱。
(3)就整體而言納米科技大國各有所長
美國納米技術的應用研究在半導體芯片、癌癥診斷、光學新材料和生物分子追蹤等領域快速發展。隨著納米技術在癌癥診斷和生物分子追蹤中的應用,目前美國納米研究熱點已逐步轉向醫學領域。醫學納米技術已經被列為美國國家的優先科研計劃。在納米醫學方面,納米傳感器可在實驗室條件下對多種癌癥進行早期診斷,而且,已能在實驗室條件下對前列腺癌、直腸癌等多種癌癥進行早期診斷。2004年,美國國立衛生研究院癌癥研究所專門出臺了一項《癌癥納米技術計劃》,目的是將納米技術、癌癥研究與分子生物醫學相結合,實現2015年消除癌癥死亡和痛苦的目標;利用納米顆粒追蹤活性物質在生物體內的活動也是一個研究熱門,這對于研究艾滋病病毒、癌細胞等在人體內的活動情況非常有用,還可以用來檢測藥物對病毒的作用效果。利用納米顆粒追蹤病毒的研究也已有成果,未來5~10年有望商業化。
雖然醫學納米技術正成為納米科技的新熱點,納米技術在半導體芯片領域的應用仍然引人關注。美國科研人員正在加緊納米級半導體材料晶體管的應用研究,期望突破傳統的極限,讓芯片體積更小、速度更快。納米顆粒的自組裝技術是這一領域中最受關注的地方。不少科學家試圖利用化學反應來合成納米顆粒,并按照一定規則排列這些顆粒,使其成為體積小而運算快的芯片。這種技術本來有望取代傳統光刻法制造芯片的技術。在光學新材料方面,目前已有可控直徑5納米到幾百納米、可控長度達到幾百微米的納米導線。
日本納米技術的研究開發實力強大,某些方面處于世界領先水平,但尚未脫離基礎和應用研究階段,距離實用化還有相當一段路要走。在納米技術的研發上,日本最重視的是應用研究,尤其是納米新材料研究。除了碳納米管外,日本開發出多種不同結構的納米材料,如納米鏈、中空微粒、多層螺旋狀結構、富勒結構套富勒結構、納米管套富勒結構、酒杯疊酒杯狀結構等。
在制造方法上,日本不斷改進電弧放電法、化學氣相合成法和激光燒蝕法等現有方法,同時積極開發新的制造技術,特別是批量生產技術。細川公司展出的低溫連續燒結設備引起關注。它能以每小時數千克的速度制造粒徑在數十納米的單一和復合的超微粒材料。東麗和三菱化學公司應用大學開發的新技術能把制造碳納米材料的成本減至原來的1/10,兩三年內即可進入批量生產階段。
日本高度重視開發檢測和加工技術。目前廣泛應用的掃描隧道顯微鏡、原子力顯微鏡、近場光學顯微鏡等的性能不斷提高,并涌現了諸如數字式顯微鏡、內藏高級照相機顯微鏡、超高真空掃描型原子力顯微鏡等新產品。科學家村田和廣成功開發出亞微米噴墨印刷裝置,能應用于納米領域,在硅、玻璃、金屬和有機高分子等多種材料的基板上印制細微電路,是世界最高水平。
日本企業、大學和研究機構積極在信息技術、生物技術等領域內為納米技術尋找用武之地,如制造單個電子晶體管、分子電子元件等更細微、更高性能的元器件和量子計算機,解析分子、蛋白質及基因的結構等。不過,這些研究大都處于探索階段,成果為數不多。
歐盟在納米科學方面頗具實力,特別是在光學和光電材料、有機電子學和光電學、磁性材料、仿生材料、納米生物材料、超導體、復合材料、醫學材料、智能材料等方面的研究能力較強。
中國在納米材料及其應用、掃描隧道顯微鏡分析和單原子操縱等方面研究較多,主要以金屬和無機非金屬納米材料為主,約占80%,高分子和化學合成材料也是一個重要方面,而在納米電子學、納米器件和納米生物醫學研究方面與發達國家有明顯差距。
四、納米技術產業化步伐加快
目前,納米技術產業化尚處于初期階段,但展示了巨大的商業前景。據統計:2004年全球納米技術的年產值已經達到500億美元,2010年將達到14400億美元。為此,各納米技術強國為了盡快實現納米技術的產業化,都在加緊采取措施,促進產業化進程。
美國國家科研項目管理部門的管理者們認為,美國大公司自身的納米技術基礎研究不足,導致美國在該領域的開發應用缺乏動力,因此,嘗試建立一個由多所大學與大企業組成的研究中心,希望借此使納米技術的基礎研究和應用開發緊密結合在一起。美國聯邦政府與加利福尼亞州政府一起斥巨資在洛杉礬地區建立一個“納米科技成果轉化中心”,以便及時有效地將納米科技領域的基礎研究成果應用于產業界。該中心的主要工作有兩項:一是進行納米技術基礎研究;二是與大企業合作,使最新基礎研究成果盡快實現產業化。其研究領域涉及納米計算、納米通訊、納米機械和納米電路等許多方面,其中不少研究成果將被率先應用于美國國防工業。
美國的一些大公司也正在認真探索利用納米技術改進其產品和工藝的潛力。IBM、惠普、英特爾等一些IT公司有可能在中期內取得突破,并生產出商業產品。一個由專業、商業和學術組織組成的網絡在迅速擴大,其目的是共享信息,促進聯系,加速納米技術應用。
日本企業界也加強了對納米技術的投入。關西地區已有近百家企業與16所大學及國立科研機構聯合,不久前又建立了“關西納米技術推進會議”,以大力促進本地區納米技術的研發和產業化進程;東麗、三菱、富士通等大公司更是紛紛斥巨資建立納米技術研究所,試圖將納米技術融合進各自從事的產業中。
歐盟于2003年建立納米技術工業平臺,推動納米技術在歐盟成員國的應用。歐盟委員會指出:建立納米技術工業平臺的目的是使工程師、材料學家、醫療研究人員、生物學家、物理學家和化學家能夠協同作戰,把納米技術應用到信息技術、化妝品、化學產品和運輸領域,生產出更清潔、更安全、更持久和更“聰明”的產品,同時減少能源消耗和垃圾。歐盟希望通過建立納米技術工業平臺和增加納米技術研究投資使其在納米技術方面盡快趕上美國。
這是一個小型印刷廠車間,面積只有70平方米左右,不到兩節地鐵車廂那么大。車間有七名女性和一名男性工人,每天的工作是將一種白色涂料噴到有機玻璃板上。
不幸很快就降臨在這些工人的身上:七名女工相繼發病,其中兩名女工去世。
在2009年9月號的《歐洲呼吸雜志》(European Respiratory Journal)上,首都醫科大學附屬朝陽醫院(下稱朝陽醫院)醫生宋玉果及其同事發表研究論文稱,上述女工“所患的可能是‘一種與納米材料有關的疾病’”。
這大概是全球首宗關于納米顆粒可能致命的臨床毒理病例報告。論文的發表,在國際學術界引發了一場小型“地震”。無論那些與納米技術有關的學術會議,還是科學新聞網站和科學家博客,中國女工之死和納米安全都是激烈爭論的話題。
噴涂車間悲劇
從研究論文披露的情況看,七位女工的年齡在18歲至47歲之間,平均不到30歲,在車間工作的時間從5個月至13個月不等。患病之前,她們的身體健康狀況良好。
2007年1月至2008年4月期間,這幾位女工被送到朝陽醫院職業病與中毒科救治。這個科室專業水準較高,其醫生經常被派往中國各個地方,協助處理血鉛超標、重金屬污染等職業安全事件。
女工們的癥狀比較類似。所有病人的肺部都受到嚴重損害,并且有胸腔積液,臉上、手上和胳膊也都出現了嚴重的瘙癢皮疹。其中,有四位女工體內的器官組織還面臨缺血缺氧的危險。
無論對于患者,還是對于醫生,治療過程都令人煎熬。胸腔積液反復出現,常用的治療方法均告失效。
最終,一名19歲的病人在接受外科手術16天之后去世;另外一名29歲的病人在癥狀出現后的第21個月,死于呼吸衰竭。
負責診斷和治療這些女工的,是朝陽醫院職業病與中毒科副主任醫師宋玉果。根據醫院網站的介紹,他多年來從事塵肺、有毒化學物中毒的診治和臨床研究。
宋玉果及其同事開始追究女工們患病的原因,并將嫌疑對象鎖定為那個印刷廠車間的工作環境。
該車間所使用的原料是一種象牙白色的聚合物材料――聚丙烯酸酯混合物。聚丙烯酸酯作為一種黏合劑,廣泛運用于建筑、印刷和裝修材料中,被認為毒性很低。不過,為了讓材料更加結實和耐磨,制造商有時會加入硅、鋅氧化物、二氧化鈦等金屬納米顆粒。
1納米等于1米的十億分之一,大致相當于人頭發絲直徑的數萬分之一。通常,粒徑在100納米以下的材料,均被稱為納米材料。
七名女工和一名男工被分為兩組,每天工作8個至12個小時。工人們每天要將大約6000克聚丙烯酸酯混合物,用勺子涂到機器的底盤上;這些混合物隨即被高壓噴射裝置噴涂在聚苯乙烯材質的有機玻璃板上;然后,有機玻璃板在75攝氏度至100攝氏度的溫度下被加熱烘干。
車間只有一扇門,沒有窗戶。噴射裝置附帶有一個燃氣排氣口,對噴涂過程中產生的煙霧起到一定的排除作用。
女工們發病以后,來自中國疾病預防控制中心、北京疾病預防控制中心、當地疾病預防控制中心的流行病學專家,以及朝陽醫院的醫生,對這家印刷廠的工作環境進行了調查。
在噴射裝置燃氣排氣口的吸氣口中,專家們找到了累積的塵埃粒子。女工們發病前五個月,燃氣排氣口發生了故障。由于室外溫度很低,車間的門也經常被關閉。專家們推斷,在這期間,車間內的空氣流動非常緩慢甚至處于靜止。
這些工人都是工廠附近的農民,沒有任何職業安全衛生知識。她們所得到的惟一用來保護自己的工具,就是棉紗口罩。而且,她們工作時只是偶爾戴戴。
據工人們反映,在噴涂過程中,經常會有一些原料噴濺到他們的臉上和胳膊上。惟一的一名男性工人在工作三個多月后離開,并沒有顯示出任何癥狀。在其他車間工作的工人,其中包括女工們的親屬,也沒有出現類似癥狀。
研究論文沒有透露這家印刷廠的名稱及其所在地區。在朝陽醫院的辦公室,宋玉果也謝絕了《財經》記者的采訪。
女工之死謎團
在女工們的肺部和胸液中,均發現了直徑約30納米的顆粒。而這般尺寸和形態的顆粒,同樣存在于她們接觸的噴涂材料之中。
此外,女工們出現了罕見的非特異性間質性肺炎,以及奇特的肺部增生組織――異物肉芽腫等癥狀。這些癥狀與納米材料毒理的動物實驗結果相似。
宋玉果及其同事因此認為,很可能是納米顆粒導致這些女工發病甚至死亡。
但不少專家對這一結論持有保留態度。
9月1日至3日,在北京舉行的中國國際納米科技會議上,多位專家提及宋玉果及其同事的論文。
美國納米健康聯盟(Alliance for NanoHealth)主席、得克薩斯大學醫學中心教授毛羅法?拉利(Mauro Ferrari)告訴《財經》記者,這篇論文非常重要,但他不認同作者關于納米顆粒導致工人患病和死亡的分析。
法拉利說,要確定納米顆粒與疾病之間的關系,首先應該分析納米顆粒的組分,確認這些顆粒來自工作環境;即便病人肺部的納米顆粒來自工作環境,在沒有對照試驗的情況下,也很難證明這些納米顆粒一定是女工患病的罪魁禍首。
他還強調,這家印刷廠的工作環境惡劣而封閉,有毒化學品和氣體充斥其中,工人們又沒有好的保護措施。這些因素對于工人患病和死亡究竟有怎樣的作用,都值得推敲。
對于論文中的一個推論――納米顆粒進入工人身體的途徑是吸入和皮膚接觸,中國科學院納米生物效應與安全性重點實驗室主任趙宇亮表示,這并不總是正確的。他強調,通過吸入方式進人體內是可能的,但是納米顆粒穿過皮膚直接進入生物體內的證據還很少。
美國麻省大學洛厄爾分校健康與環境學院助理教授迪米特爾?貝羅(Dhimiter Bello)因故取消了行程,未能到北京參加此次學術會議。但他通過電郵對《財經》記者說,在工人肺部和工作環境中都發現納米顆粒,只能說明納米顆粒有可能是一個致病因素。實際上,從論文提供的信息來看,并不能排除其他的可能致病因素。例如,噴涂過程中用到的聚合物材料在高溫下的降解產物,也可能是主要或者惟一造成女工患病的原因。
在貝羅看來,這場悲劇或許不應歸咎于納米顆粒,而應怪罪車間內原始的、不人道的工作條件,“這是一次警醒,無論(悲劇)是否與納米顆粒相關,工作場所的暴露條件都應當被控制在安全范圍內。在這方面,中國還有很長的路要走。”
美國加州大學洛杉磯分校納米毒理研究中心主任安德烈?內奧教授(Andre Nel)也說,在這起事件中,工人們沒有得到應有的生產安全保障,政府部門應該負起監督的責任,以保證生產過程中不會產生對人體和環境有害的物質。
實際上,論文本身也承認了研究存在局限:由于缺乏環境監測數據,無法弄清印刷廠車間納米顆粒的濃度;納米顆粒的組成也不清楚。
此外,令宋玉果及其同事疑惑的是,究竟是特定的納米顆粒,還是所有納米顆粒都有可能致病?如果的確是納米顆粒導致那些女工患病,對其他在工作中也會接觸納米顆粒的工人來說,又意味著什么?
如今,關于女工之死的研究論文已經成為了納米技術研究者們的一個熱點話題。據《財經》記者了解,歐洲和美國還有科學家打算組成一個專家小組,到中國開展調研,并希望取到樣品回去研究。
誘人前景與安全隱患
不管納米顆粒是否被確認為幾位女工悲慘命運的元兇,納米技術的安全性問題都因此再度引發各界關注。
納米技術正在走進人們的生活。從一桶涂料、一瓶防曬霜到一件衣服,都有可能用到納米技術。
納米材料顆粒小、表面積巨大,會顯示出很多獨特的物理化學性質,從而在電子、光學、磁學、能源化工、生物醫學、環境保護等領域有巨大的應用前景。例如,很多納米材料都可用作涂料,替代那些強毒性的化學物質;用碳納米管等納米材料改良電池,可以推動電動汽車的發展,使電力更持久等。
紐約一家名為“盧克斯研究”的市場分析公司稱,2007年銷售的納米技術相關產品,價值約1470億美元。到2015年,這一數字可能突破3萬億美元。
納米技術在展現出誘人前景的同時,其安全性問題也進入了人們的視野。
隨著納米材料的大規模應用,研究人員和工人容易暴露在納米顆粒濃度較大的實驗室或生產車間之中。此外,普通公眾也可能暴露在納米顆粒之下:涂料、化妝品等產品中用到的納米材料,可能在產品損壞或分解時釋放。
這些納米顆粒物可能經過呼吸道吸入、胃腸道攝入、藥物注射等方式進入人體,并經過淋巴和血液循環,轉運到全身各個器官。
根據多項流行病學研究,空氣中的細顆粒物,尤其是納米級別的顆粒物,濃度的大量增加會導致死亡率的增加。倫敦大霧曾經導致居民大量死亡,就是一個被經常引用的案例。
那么,人造的納米材料進入人體后,是否會導致特殊的生物效應,并對人體健康構成危害呢?從理論上說,納米物質由于尺寸小,與常規物質相比更容易透過人體的各道屏障;由于表面積大,也可能有更多毒害人體的方式。
朝陽醫院的宋玉果在8月31日《健康報》發表文章說,相關的動物實驗研究發現,許多納米物質具有明顯的毒性,其中研究較多的為碳納米管、納米二氧化鈦等。一些納米物質還被認為可致動物肺臟、肝臟、腎臟和血液系統等損傷。
對于與納米物質相關的疾病,宋玉果稱之為“納米相關物質疾病”。當然,他也表示,公眾不必為納米物質相關疾病感到恐慌,不是所有納米顆粒物都有毒性。
動物毒理性實驗的結果,也不能簡單地推到人的身上。但由于科學界對納米安全性的研究剛剛開始,幾乎沒有任何相關人體毒理性資料――這也是宋玉果及其同事的論文引起國際科學界高度關注的一個原因。
中國科學院納米生物效應與安全性重點實驗室主任趙宇亮告訴《財經》記者,目前開展過安全性研究的納米材料只有十幾種,還非常有限。但他相信,隨著研究隊伍的壯大和研究投入的加大,將來必定可以從大量的數據積累中尋找到一些規律。
在國際上,納米安全性研究的熱潮大約始于2003年。《科學》和《自然》等著名學術雜志紛紛發表文章,探討納米材料與納米技術的安全問題:納米顆粒對人體健康、自然環境和社會安全等是否有潛在的負面影響。
這之后,各國明顯增加了納米安全性方面的研究。美國的國家納米技術計劃(NNI)將總預算的11%投入納米健康與環境研究。歐盟每年支持三個左右與此相關的項目,每個項目的經費規模在300萬至500萬歐元之間,而歐盟各個國家還有自己國內支持的納米安全性項目。
中國在極力推進納米技術研究和產業化的同時,也開展了納米安全性的研究。其中,中國科學院在2001年就開始籌建納米生物效應與安全性實驗室。科技部在2006年啟動了為期五年的國家重點基礎研究發展計劃(即“973”計劃)項目“人造納米材料的生物安全性研究及解決方案探索”,經費2500萬元,首席科學家由趙宇亮擔任。
不過,趙宇亮告訴《財經》記者,與美國和歐盟相比,中國在納米安全性研究上的投入只是“一個零頭”。
政治決策與公共參與
中國科學家在納米安全性方面的研究工作,得到了國際同行的認可。其中,在每年召開的與納米毒理學相關的國際會議上,幾乎都會邀請中國科學家作大會報告。趙宇亮還與其他科學家共同主編了第一本納米毒理學英文專著。美國納米健康聯盟主席法拉利稱,中國科學家是納米毒理學研究領域的領導者之一。
不過,令趙宇亮感到尷尬的是,美國國家納米技術協調辦公室的官員曾經問他,包括美國、歐盟、英國、日本等很多國家的相關管理部門,都發表了對于納米技術安全性的調研報告、方針和策略,為什么中國沒有?對此,趙宇亮不知如何回答是好。
在美國和歐盟,納米技術及其安全性已經成為政治家們關心的話題之一。它們的環保部門、國家科學與技術委員會,以及其他政府研究機構,會通過白皮書等文件形式,發表政府層面對于納米安全性問題的見解。
其中,2001年,美國在國家科學技術委員會之下建立了國家納米技術協調辦公室,負責協調政府層面之間的納米研究計劃。而納米研究項目的成果,會通過這個辦公室反饋給其他政府機構,幫助科學研究去影響政府決策。
2009年3月,美國食品藥品監督管理局(FDA)還了一份有關納米技術的合作倡議。該局將與納米健康聯盟旗下的八個研究機構合作,以加快建立保障納米醫療產品安全可靠的有效體系。法拉利告訴《財經》記者,在實驗室研究結果與安全性評估的關聯,以及納米技術相關藥物的審批等方面,美國食品藥品監督管理局都做了很多工作。
相比之下,納米安全性在中國似乎局限于科學研究的階段,政府部門仍然保持沉默。
對于納米技術的研究和產業化,各國都在積極支持。其原因正如美國《環境健康展望》雜志所稱,科學界普遍認為,納米材料和納米技術對于社會是十分有益的,能夠提供更好的藥物、更強更輕的產品、對環境更友好的能源和環境技術。
與此同時,為了獲得公眾對于納米技術發展的支持,各國也需要在納米安全性方面進行更多的研究,同時鼓勵公眾參與。在中國納米國際科技會議的閉幕式上,法拉利也特地呼吁加大公眾在納米安全性研究上的參與程度。
實際上,關于納米技術發展的“風險預防”原則,在歐洲和美國等地正深入人心――人們希望在納米技術等新技術的風險出現之前,盡可能地提前進行防范和干預。而公眾及早參與到納米技術研究和政策的討論,是“風險預防”實踐的關鍵環節之一。
英國杜倫大學風險研究所負責人菲爾?麥克納頓(Phil Macnaghten)教授告訴《財經》記者,要想避免納米技術重蹈轉基因技術的覆轍,讓公眾從“上游”參與討論影響納米技術的研究和政策,或許是一個有效的辦法。如果等到技術發展之后再讓公眾在“下游”參與,可能為時已晚,“很難改變公眾業已形成的印象和認識”。
生為化學
彭天右,1 969年生于湖北省麻城市,長期以來從事無機化學和材料化學的研究及教學工作,年紀尚青卻成績斐然。
“江城多山,珞珈獨秀,山上有黌,武漢大學。”武漢大學是他的母校,在這個被譽為“中國最美麗的大學”里,彭天右停留最多的地方不是花香流溢的櫻花大道,不是風光旖旎的東湖之畔,而是對于常人來說有些枯燥的化學實驗室。學習,實驗對他來說,發于樂趣,興于責任。春華秋實1 998年6月,他博士畢業后留校任職,2004年破格晉升教授。對知識瀚海的探索讓他甘之若飴,從不止步2001年10月至2003年5月在京都大學做博士后研究,其間兼任日本基礎化學研究所外國人特別研究員:2003年3月訪問美國羅切斯特大學和新澤西州立大學;2004年7月和2005年10月應邀訪問京都大學福井謙一研究中心和香港浸會大學化學系2007年7月訪問新加坡國立大學和南洋理工大學;2008年11月訪問美國wisconsln--Madison大學和DeIaware大學。
無論走到哪里,他從未離開心愛的科研事業。在小小的實驗室里,他苦煉神功,用“天眼”識別著自然界的萬千物質,為祖國無機化學的發展燃燒著自己的青春與活力。工作幾年,他曾先后主持國家“863"‘計劃專題,國家自然科學基金,教育部新世紀優秀人才基金、留學回國人員基金,湖北省杰出人才基金,納米重大專項、重點科技計劃和自然科學基金等項目。
追探納米前沿
納米技術近幾年來得到了飛速的發展。緊扣化學發展時代脈搏的彭天右,主要從事金屬氧化物、硫化物及其復合納米材料的合成及其光電轉換、光催化性能研究工作。在組成,晶形、形貌、多孔性、空間結構的調控及其光電功能性研究方面積累了一些重要的經驗。在納米復合光催化材料的制備及其可見光分解水制氫、光催化降解有機污染物以及染料敏化太陽能電池等方面均取得了重要的研究進展。
他在國際上較早制備了微米/納米Al203、Ti02、NlO,Si02管,CdS納米管,竹結狀Ti02納米管以及分級有序T10:管中管結構等。在納米材料的組成,形貌、多7L性、空間結構、能帶調控等方面取得了一定的成果。從調節能帶寬度和紅移匹配入手+探索能可見光響應的復合光催化材料。經過不同的摻雜(包括有機/無機金屬元素及稀土元素)以及不同能帶半導體材料的復合,獲得了不同的能隙、p/n特性的納米介孔半導體復合氧化物。首次合成的介7LTi02(m-Ti02)納米粉體具有較高的比表面積和高度晶化的介孔壁等結構特點。該類材料由于其獨特的微觀結構而表現出優異的光催化活性,對m-Ti02的微觀結構與光催化制氫效率的相關性也進行了較為深入的研究。結果表明:m--Ti02納米粉體在甲醇為犧牲試劑,紫外光照下的光催化產氫效率高達9,1mmoI/g h,高于商品催化劑(德國P25)的光催化產氫效率。使用m--Ti02制作的染料敏化太陽能電池的效率在光強為42mW/cm2時達到了10 1 2%,比使用P25粉體時提高了3 79%,這主要是因為m-Ti02納米粉體制備膜電極的表面態的影響較小,且染料分子的負載量較大。
在“敏化劑設計,合成及其敏化納米Ti02產氫性能”研究中,彭天右首次提出采用雙核釕聯吡啶為染料,利用其天線效應提高對可見光的吸收和光電子注入效率的新思路。與單核配合物相比,雙核釘聯吡啶敏化m-Tioz的產氫效率提高了3―5倍。他還提出了通過建立基態染料分子在半導體表面的化學鍵合和氧化態染料分子的離解之間的動態平衡,可實現電子的有效注入和通過氧化態染料分子的及時解離來阻塞電子回傳通道,從而有效地提高染料敏化半導體體系的光催化產氫效率及其長效穩定性的新觀點。
在“系光催化材料的可見光催化活性”研究中,他采用沉淀法制備的單斜BiV04納米粒子為單晶顆粒,光譜帶邊值為520nm,其可見光催化活性較高。研究發現,Ag團簇的負載有利于釋氧,但AgN03/BiV04再生困難。因此,彭天右提出采用鐵鹽代替銀鹽做犧牲試劑,具有更好的實際應用前景的新觀點。此外,他還首次發現利用CTAB做模板劑時,通過調節水熱溫度可選擇性地合成微球狀或片層狀BiV04,并可調節其晶相組成。
在“碳基一半導體氧化物復合材料系列的制備及其產氫性能”研究方面,他較早采用水熱法原位合成了碳基(c60、SWNT,MWNT、石墨等) 半導體氧化物(ZnO、Ti02等)納米復合材料。其中,C60/Ti02、MWNT/Ti02、C60/T102在400nm--800nm范圍內有明顯的吸收,并表現出明顯的可見光催化制氫活性。隨著復合比例的提高,產氫效率逐漸提高,但比例過高反而會導致產氫效率的降低。在全光譜條件下,納米復合光催化劑均表現出了優于純Ti02的產氫性能。該類復合材料突破了半導體氧化物只吸收紫外光而有機光敏劑的光降解和不穩定等難題,具有良好的穩定性和較高的可見光催化產氫效率,是一類新型的具有光明前途的可見光驅動催化劑。
在光電極及其集成器件的制備及其光電化學性能調控方面,彭教授也開展了一些研究。以自制的光催化材料為主要研究對象,采用刮涂和絲網印刷技術制備光電極膜或其多層復合膜器件。利用電化學測定,以及將制備膜電極與Pt化對電極組成染料敏化納米晶太陽能電池(DSSCs)測定其光電流一光電壓(1 V)曲線等手段,對膜電極的電子傳輸效率、光生載流子的界面復合、電子界面傳輸效率、光電子壽命、電化學和光電化學行為進行了較為深入的探討,獲得了一些膜電極制備及其光電轉換效能方面的具有指導意義的規律與結論。
另外,彭天右還在湖北省重點和重大科技計劃(納米專項)的資助下,開展了納米氧化物粉體的軟化學合成及其產業化研究。采用獨特而價廉的異相共沸蒸餾技術,有效地解決了制備過程中的粒子不正常長大,防止了納米粉體在煅燒過程中硬團聚體的形成這一氧化鋁制備過程中所普遍存在的難題。提出的高純氧化鋁納米粉體的軟化學制備技術,可縮短工期,降低能耗。通過優選添加劑,調控合成工藝控制晶核的形成和粒子的生長,根據不同需求,調節合成條件生產不同形態的粒體(如球形、準球形、片狀,棒狀及多孔型等)。粒徑在5nm~5 u m之間局部可調,產品純度達到99.95%以
上,粒度分布均勻且分布窄的高純氧化鋁超細粉體。該納米氧化鋁產品可替代進口,經有關企業使用測試證明其制備的納米氧化鋁具有較好的壓制和燒結性能。上述相關研究成果通過湖北省科技廳組織的專家鑒定,鑒定結論為:該項研究成果屬國內首創,整體技術達到國際先進水平。此外,以軟化學方法廉價制備的介孔v Al z03具有高比表面積(600℃熱處理后400m2/g)、高熱穩定性(在1000℃下仍然為Y相,120m 2/g),可望在催化劑、汽車尾氣三效催化轉化中獲得應用。銳鈦礦Tioz通常在600~C就開始向金紅石轉化。為了利用銳鈦礦的光催化,殺菌能力,需將其固化在玻璃或陶瓷表面,但其處理溫度一般在800℃以上,因此要求在高溫下穩定且保持銳鈦礦相的Ti02。然而,以表面活性劑模板法制備的多孔Tio2通常為無活性的無定形結構,在其晶化過程中會導致孔結構的塌陷。為此,彭天右及其課題組較早制備了具有高熱穩定性、高比表面積、高度晶化的銳鈦礦孔壁的介孔材料。其在光催化降解污染物、光解水制氫和太陽能光電化學電池等方面具有廣闊的應用前景。
也許這一個個簡單的案例無法述清他的執著與努力,然,天道酬勤,那一項項獎項還是印證了一切。2000年9月,獲湖北省優秀博士學位論文獎2000年9月,獲武漢大學化學院本科生業余科研指導獎;2003年3月,獲教育部自然科學二等獎:2004年4月,取得成果鑒定1項(國際先進水平):2004年1 2月獲武漢大學藍月亮優秀研究生指導教師獎:2004年1 2月,獲武漢大學優秀研究生教學獎:2006年獲優秀研究生指導教師獎和研究生教學獎:2008年11月獲湖北省自然科學三等獎……100余篇(其中SCl收錄論文62篇),論文他引250余次,獲授權發明專利5項。
賦生命以質感
看今朝,碩果累累:憶往昔,崢嶸歲月。難忘2003年5月回國后,在只有半間實驗室、5000元科研經費的情況下,他艱難地開始實驗室的組建和科學研究工作。面對困難,他積極創造條件開展教學科研工作,甚至在科研經費緊缺時,自掏腰包墊付購買設備和試劑的費用(最高達7萬余元)。經過6年的不斷耕耘,由他主持的科研經費已達260余萬元,新購買實驗與辦公設備等固定資產共計1 20余萬元。
作為一名教授,彭天右不僅要積極爭取研究經費,時刻關注本研究方向乃至本學科的發展動向與前沿,而且身體力行,言傳身教,培養了學生嚴謹務實、勇于創新的作風。作為一名年輕教師,彭教授深知學生需要老師全方位的悉心指導,及時糾正研究過程中出現的偏差。長期以來主講本科生基礎課《無機及分析化學》,本科生及研究生選修課《生物無機化學》,研究生課程《現代合成化學》和《材料化學》的部分內容。幾年來指導博士生8人、碩士生1 0人,指導本科生畢業論文1 6人(6人攻讀碩士學位,2人被推薦到國外攻讀博士學位),本科生業余科研1 6人。2004、2005連續兩年,由他指導的楊煥平(三星獎)、趙德(曾昭掄獎)同學都獲得了研究生專項獎學金。彭天右非常注重教書與育人相結合,以身作則樹立良好的學風,以負責的態度關心、愛護與幫助學生,使學生在知識的殿堂里將學業和品質雙向提升,將來更好地服務于社會。
關鍵詞:碩士研究生;導師;引路人
中圖分類號:G643 文獻標志碼:A 文章編號:1674-9324(2014)09-0078-03
一、引言
面對世界范圍的新技術革命和人才競爭,把自己的研究生培養成為“勤奮、嚴謹、求實、協作、創新”的高水平專業人才,是每一位導師追求的目標[1]。多年來,本文作者在碩士研究生培養方面做了些探討工作,并取得了一點成效。在指導學生過程中,準確把握研究內容,科學判定實驗方案和技術路線,合理確定研究目標,嚴格督促檢查。由于嚴格要求,方法得當,使得研究生取得了較好成績。每人發表SCI英文學術論文兩篇以上,獲校級優秀碩士學位論文7篇、獲省級優秀碩士學位論文4篇、省級研究生優秀科技創新成果二等獎兩項三等獎兩項,近三年學生發表學術論文60%以上被SCI收錄,單篇最高影響因子為6.1,培養的研究生畢業時考取博士研究生達42%,并獲2009年度山東省優秀碩士研究生指導教師。
清華大學的尤馭球先生在一次指導博士生座談會上幽默地說:“我的主要體會就是:帶博士生比帶碩士生省事兒”,這句話道出了碩士生培養的難度和重要性。碩士研究生培養工作是培養科研型人才的基礎教育工作,要做好這項工作,有許多問題需要深入探討[2]。本文在培養碩士研究生工作中也深有體會,并積累了一些經驗。
二、明確培養目標,全方位正確引導
碩士研究生年輕活躍,容易接受新生事物,但缺少社會磨煉,比較看重個人價值,思想容易波動,自覺性和自制力不強,所以,在培養過程中需要使其明確培養目標,并進行全方位引導。首先,引導學生樹立正確的人生觀和價值觀,使學生懂得要學會做學問,先要學會做人,不受功利與名利思想影響,甘于短期寂寞,樹立遠大理想和獻身科學的精神,養成實事求是、一絲不茍和勤奮苦學的學風。其次,引導學生明確學習與研究目標。為學生制定學術研究指導計劃,讓學生第一學期就有明確的學習計劃和目標,不但知道自己在三年里要做什么,還要知道具體怎樣做,達到什么要求。在這個指導計劃中強調引導學生學會自學和獨立開展研究工作,打好基礎,掌握專業英語、信息收集、實驗設計和數據處理分析四項基本技能,并通過要求發表英文學術論文培養學生運用外語能力和綜合素質。第三,引導學生善于觀察。由于碩士研究生的專業知識面和實驗經驗有很大局限性,易判斷失誤而漏掉一些很重要的實驗現象,所以,導師要經常親臨第一線指導,親自動手,親自觀察實驗過程中出現的各種現象,幫助學生抓住一些重要的現象,提高科研工作效率,鍛煉學生進行科學實驗的能力,培養善于觀察的科學作風和方法,提高科研水平。第四,引導學生善于協作與協調。協作協調能力是學生必備的一種素質[3]。平時有意讓學生去聯系處理校內外有關科研的一些事情,鍛煉培養他們的協作與協調能力,并鼓勵學生之間相互幫助,相互合作,相互學習啟發,共同提高。
三、關心鼓勵,做學生的良師益友
“一日為師,終身為父”這句話強調了導師對學生的影響和導師的責任。導師的人品、學問以及如何對待學生都將對學生有直接的影響,導師應該始終把關愛學生、培養學生放在第一位,尊重學生人格,充分調動學生的學習科研興趣。由于碩士研究生正處在談婚論嫁的時期,經常會遇到一些戀愛、婚姻、家庭以及其他個人生活方面的問題。作為導師應該細心全面了解學生,及時給予他們正確的引導,幫助他們正確處理生活學習上的困難,做他們的良師益友。例如,一位研究生性格內向,不善于與人交流,入學學歷較低,年齡較大,學習成效不佳。通過主動與他談話,和他探討學習、生活和就業相關問題,才知道是戀愛出現問題才造成他情緒低落。通過耐心開導,想法幫助他解決問題,鼓勵他要勇于攀登科學高峰。之后該生不但更加勤奮刻苦地學習,而且變得善于與他人交流,學習成績優良,學習期間6篇,其中第一作者英文論文4篇,單篇最高SCI影響因子為3.05,并榮獲2007年省級優秀碩士學位論文,畢業后考入中國石油大學博士生,博士后出站后在河南理工大學工作,現已經是優秀的碩士研究生導師,主持國家自然科學基金項目。有些研究生來自農村,家庭條件比較困難,在生活上要盡力去幫助他們,例如,有一名學生的母親住院急需住院費,導師知道后設法幫助他解決困難,使他非常感動,也激發了他的學習和科研熱情,使他取得了可喜的成績,在學習期間發表SCI英文論文4篇,榮獲省級研究生優秀科技創新成果二等獎、并獲2009年省優秀碩士學位論文,畢業后考入山東大學博士生,博士畢業獲德國洪堡獎學金,現在德國讀博士后。
四、言傳身教,形成良好學風
為人師表,誨人不倦。學高為師,身正為范。導師的一言一行對樹立良好的學風有潛移默化的影響[4]。以嚴謹認真的工作態度對待學生,從小事做起,從點點滴滴不斷感染學生,真正起到表率作用。遵守時間能反映一個人的作風和精神面貌。在參加任何活動中,導師自己要提前到,對無故遲到的學生會毫不客氣地批評,讓學生養成遵守時間的好習慣。與學生約好的事情導師一定要認真的去做,從不違約。平時經常與學生一起做實驗,并在實驗過程中認真講解一些有關的知識,探討實驗方法,分析實驗結果,啟發學生思考問題,通過實驗培養他們實事求是和嚴謹的作風。有時約好與學生一起作實驗,甚至需要晚上繼續做,我們也會一直堅持到最后。在科研工作中引導學生樹立良好的學風。良好的學風使學生研究成績突出,例如,2009屆周偉家同學發表SCI英文論文8篇,獲2010年省優秀碩士學位論文,并榮獲省級研究生優秀科技創新成果三等獎,畢業后考入山東大學博士生,博士畢業后進華南理工大學工作。另外,2012年畢業的碩士研究生發表SCI英文論文的影響因子有很大提高,分別達5.985(Journal of Materials Chemistry)和6.1(Chemical Communications)。研二的學生現在都已經做了大量的實驗,積累了很多的實驗數據,已經發表出了中文綜述論文,并都至少撰寫出了兩篇英文論文進行投稿實踐。
五、把握學科前沿,提高學生創新能力
引導學生提高科研能力,多出高水平科研成果,寫出高質量學位論文的具體做法有如下幾點。
1.引導學生要選新的、有一定難度的、屬于學科前沿的課題,把握好研究方向,使學生進入學科的前沿陣地,這是培養創新型專業人才的前提。要想引導學生進入學科的前沿陣地,首先就要求導師自己要緊緊跟上最新理論的發展,并要特別注意一些新興學科的成果和不同學科的交叉結合。只有在學科的前沿陣地上,才能充分發揮學生的創造性,培養學生的創新能力[5]。
2.近三年來,本實驗室根據本學科前沿的研究動態,以納米功能材料的仿生合成為研究方向,提出微生物催化綠色仿生合成新技術,利用這個新技術在常溫常壓下合成了一系列復雜結構的介孔磷酸鹽材料,解決了傳統化學法合成的非氧化硅介孔材料穩定性差、難以合成、無法調變其結構的關鍵技術問題,并實現了介孔磷酸鹽材料的批量合成,合成的介孔材料在化工環保、醫藥、能源等領域顯示出重要應用價值與應用前景,并已經形成了自己的研究特色,在國內外引起了同行專家的重視。由于本研究方向屬于新興交叉學科,要求學生要掌握一些有關微生物發酵原理、生物無機化學、超分子化學、配位化學、納米化學,結構生物學、分子生物學等跨學科方面的知識。所以,鼓勵引導學生針對實際問題擴大專業知識面,深入理論分析,才能提高學生的科研能力。
3.經常組織學生討論學科研究領域的發展和研究中遇到的疑難問題,師生共同研究討論,充分發揚學術民主,互相取長補短,創造學術探討式的氣氛,激發學生創新性工作。
4.引導和幫助學生不但能正確分析實驗結果,包括與同樣方法制備出來的空白樣品的對比分析、與不同方法制備出來的同種樣品的對比分析和參考文獻中的結果的對比分析等。還要引導學生善于總結實驗結果,找出其創新點,并引導學生進行高水平的學術寫作,把自己的實驗成果發表出去,讓同行專家們認可。要引導學生在論文寫作上一絲不茍,從實驗方法的嚴格性、結論的可靠性以及句法、標點符號、專業名詞、格式、結構布局、參考文獻等都要嚴格要求,尤其對論文的每一個結論都要非常慎重,不確定的結論不要急于發表。投稿前至少要修改五遍。
六、結語
實踐證明,上述做法行之有效,在加強專業基礎知識和基本技能的培養訓練基礎上,努力提高學術水平,才能使碩士研究生在學術研究中早日成才。
參考文獻:
[1]徐匡迪.學師風范做名副其實的科技工作者[J].學位與研究生教育,2013,(1):1-5.
[2]吳孟超.用一生為理想去奮斗[J].學位與研究生教育,2013,(1):6-8.
[3]陳學飛.質量是研究生教育的生命線――北京大學高等教育學科研究生培養的工作報告[J].現代大學教育,2002,(4):7-10.
[4]李連.淺談當好碩士生導師的幾點體會[J].學位與研究生教育,2012,(4):11-14.
[5]薛惠鋒.研究生成才需重點把握的四大觀念[J].學位與研究生教育,2011,(3):6-8.