国产色av,短篇公交车高h肉辣全集目录,一个人在线观看免费的视频完整版,最近日本mv字幕免费观看视频

首頁 > 文章中心 > 量子力學在化學中的應用

量子力學在化學中的應用

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇量子力學在化學中的應用范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。

量子力學在化學中的應用

量子力學在化學中的應用范文第1篇

關鍵詞:類比教學法;量子力學;應用探究

中圖分類號:G642.41 文獻標志碼:A 文章編號:1674-9324(2014)24-0100-02

量子力學作為描寫微觀物質結構、運動與變化規律的學科,是現代物理學的基礎之一,而且在化學和很多近代技術中也有廣泛應用。量子力學是在舊量子論的基礎上發展起來的,對于量子數大到一定的極限的量子系統,可以用經典理論精確描述。量子力學、經典力學既有區別也有聯系,從這些區別和聯系入手可以使學生更加容易理解量子力學的新知識。基于此,本文在分析量子力學和經典力學的相似點的基礎上,探究并實踐了如何讓學生加深理解的問題。將類比教學法應用于量子力學的實踐教學當中,這樣既可以豐富教學內容,提高學生積極性,又可以培養學生創造性思維,同時還可以鞏固學生以前學過的經典物理學的相關知識,進而能提升量子力學課教學質量。

一、類比教學法

類比方法是根據兩類物理現象在某些性質的相同或相似處,推斷出這兩類物理現象的另一些性質也相同或相似的一種邏輯推理方法。類比法是專業術語,指由一類事物所具有的某種屬性,可以推測與其類似的事物也應具有這種屬性的推理方法。在我們學習一些十分抽象地看不見、摸不著的物理量時,由于不易理解,我們就拿出一個大家能看見的且與之很相似的事物來進行對照學習。類比方法強調在分析、發現不同事物的共同性質的基礎上,把一個事物的屬性轉移到另一類事物上。類比的過程具有創造性,是科學家常用的思維方法。

二、量子力學與經典力學的相似點及類比教學法的應用

物理學研究的目的是總結、概括各種不同物質在時空中的運動規律,并且把這些規律用數學公式表示出來。量子力學和經典力學的研究對象不同,而宏觀和微觀物質自身性質的巨大差異,造成了學習量子力學相比于學習經典力學的困難。而另一方面,把量子力學和經典力學類比,找到它們之間的共同點,再進一步推理,可以更加容易理解量子力學理論。在處理物體直線運動或是自由落體運動時,我們自然會想到在(x,y,z)所組成的空間坐標系中,根據牛頓運動學定律,分析物體的狀態隨時間的變化情況。每一時刻,物體的位置可以用三維空間里的任何一個點的坐標表示出來。為了方便地處理不同物理問題,空間直角坐標系可以變換成柱坐標系、球坐標系。處理物體的碰撞時,把實驗室坐標系換成質心坐標系,利用動量守恒原理,也可以使表達式更加簡單,易于求解。因此,選擇最佳的坐標系,可以讓復雜的問題變的簡單。在微觀世界中,量子力學仍然需要在恰當的坐標系中討論物理問題。在經典力學中,物體處在某個狀態的位置和角動量可以被精確的計算。但是,對于微觀體系,比如一個電子在原子中的環繞原子核運動,它的位置、動量不能同時精確確定。當該電子處于定態時,它的能量不會隨時間變化,即它的能量守恒。這時,我們可以把電子放在能量坐標系中討論。在數學中,希爾伯特空間是歐幾里得空間的一個推廣,它不再局限于有限維的情形。在量子力學中,能量坐標系被稱為能量表象。量子力學中常見的表象包括:動量表象,能量表象,粒子數表象等。在矩陣力學中,把狀態Ψ看成是一個列向量。選擇一個特定的Q表象,就相當于選取一個特定的坐標系。■的本征函數u1(x1),u2(x2),u3(x3)…un(xn)就是這個表象的基矢,相當于笛卡爾坐標系的單位矢量i,j,k;波函數a1(t),a2(t)…an(t),是態矢量Ψ在Q表象中沿基矢方向的“分量”,正如A沿i,j,k三個方向的分量是(Ax,Ay,Az)一樣;■本征函數的歸一性,類似于幾何坐標系的i?ij?jk?k1;而本征函數的正交性,類似于幾何坐標系中i?ji?kj?k0[5]。在量子力學中,■的本征函數有無限多,稱態矢量所在空間是無限維的希爾伯特空間。由此看來,幾何坐標和力學表象是同一個概念,只是處理不同的問題時,選擇不同的坐標系可以減小復雜程度。在量子力學中如果知道了狀態的波函數,那么粒子處于空間某點的幾率,以及力學量的平均值均可求得,因此說波函數完全描述粒子體系的運動狀態。而對于同一個狀態,在不同的表象中,有不同的波函數形式。量子力學的一種基本假設是波函數滿足態疊加原理:

ψc1ψ1+c2ψ2+K+cnψn (1)

此式的物理意義是量子體系的一般狀態是所有本征態的線性疊加。Ψn是體系的可能態,相應的概率分別為|ck|2,而且滿足歸一化■c■■1。在經典力學中,伽利略變換可以變換不同的慣性系。量子力學則借助幺正矩陣來實現不同表象之間的變換。那什么是幺正矩陣呢?簡單來說就是滿足S+S-1的矩陣稱為幺正矩陣,而由幺正矩陣所表示的變化稱為幺正變換。所以由一個表象到另一個表象的變換是幺正變換。如果以F'表示算符■在B表象中的矩陣,F表示■在A表象中的矩陣,則通過幺正變換可得:F'S-1FS (2) 也就是說力學量F在A表象中的矩陣左右分別乘幺正矩陣的逆矩陣和原矩陣就可以把力學量F轉換到B表象中去。量子力學和經典力學間的相似點還有很多。量子力學類比教學法的核心是,注意強調量子力學與經典力學的必然聯系,引導學生積極思考、探索量子力學新知識的本質,把新知識與已經掌握的量子力學知識類比,深入透徹的理解量子力學的假設、定義和公式。

綜上所述,把量子力學與經典力學做類比,就是要發掘出、并重點講解它們之間的相似點,讓學生在這些相似點的基礎上,主動的思考分辨量子力學和經典力學的相同和不同。本文以表象為例,把表象變換與數學上幾何坐標進行了類比,講述了對表象及其變換的理解。總之,在講授抽象的量子力學時,把它和經典物理進行類比可以幫助學生更好的理解、掌握新知識,能起到很好的教學效果,也有助于培養學生的創新精神。但類比法不是萬能的,要靈活、恰當地應用到位,才能最大程度地發揮它的積極作用。

參考文獻:

[1]呂增建.從量子力學的建立看類比思維的創新作用[J].力學與實踐,2009,(31):90-92.

[2]蔡曉烽.物理教學中的類比教學[J].寧德師專學報(自然科學版),2010,22(3):323-325.

[3]周世勛.量子力學教程(第二版)[M].北京:高等教育出版社,2009.

[4]曾謹言.量子力學教程(第二版)[M].北京:科學出版社,2008.

[5]趙鳳嬌.對量子力學中表象及變換的理解[J].硅谷,2011,(23):17.

[6]郭華.用類比方法討論量子力學問題[J].中央民族大學學報(自然科學版),2013,2(2):45-50.

量子力學在化學中的應用范文第2篇

關鍵詞:量子力學;教學探索;普通高校

中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2013)50-0212-02

一、概論

量子力學從建立伊始就得到了迅速的發展,并很快融合其他學科,發展建立了量子化學、分子生物學等眾多新興學科。曾謹言曾說過,量子力學的進一步發展,也許會對21世紀人類的物質文明有更深遠的影響[1]。

地處西部地區的貴州省,基礎教育水平相對落后。表1列出了2005年到2012年來的貴州省高考二本理科錄取分數線,從中可知:自2009年起二本線已經低于60%的及格線,并呈顯越來越低的趨勢。對于地方性新升本的普通本科學校來講,其生源質量相對較低。同時,在物理學(師范)專業大部分學生畢業后的出路主要是中學教師、事業單位一般工作人員及公務員,對量子力學的直接需求并不急切。再加上量子力學的“曲高和寡”,學生長期以來形成學之無用的觀念,學習意愿很低。在課時安排上,隨著近年教育改革的推進,提倡重視實習實踐課程、注重學生能力培養的觀念的深入,各門課程的教學時數被壓縮,量子力學課程課時從72壓縮至54學時,課時被壓縮25%。

總之,在學校生源質量逐年下降、學生學習意愿逐年降低,且課時量大幅減少的情況下,教師的教學難度進一步增大。以下本人結合從2005至10級《量子力學》的教學經驗,談一下教學方面的思考。

二、依據學生情況,合理安排教學內容

1.根據班級的基礎區別化對待,微調課程內容。考慮到我校學生的實際情況和需要,教學難度應與重點院校學生有差別。同時,通過前一屆的教學積累經驗,對后續教學應有小的調整。在備課時,通過微調教學內容來適應學習基礎和能力不同的學生。比如,通過課堂教學及作業的反饋,了解該班學生的學習狀態,再根據班級學習狀況的不同,進行后續課程內容的微調。教學中注重量子力學基本概念、規律和物理思想的展開,降低教學內容的深度,注重面上的擴展,進行全方位拓寬、覆蓋,特別是降低困難題目在解題方面要求,幫助學生克服學習的畏難心理。

2.照顧班內大多數,適當降低數學推導難度。對于教學過程中將要碰到的數學問題,可采取提前布置作業的方法,讓學生主動去復習,再輔以教師課堂講解復習,以解決學生因為數學基礎差而造成的理解困難。同時,可以通過補充相關數學知識,細化推導過程,降低推導難度來解決。比如:在講解態和力學量的表象時[2],要求學生提前復習線性代數中矩陣特征值、特征向量求解及特征向量的斯密特正交化方法。使學生掌握相關的數學知識,這對理解算符本征方程的本征值和本征函數起了很大的推動作用。

3.注重量子論思想的培養。量子論的出現,推動了哲學的發展,給傳統的時空觀、物質觀等帶來了巨大的沖擊,舊的世界觀在它革命性的沖擊下分崩離析,新的世界觀逐漸形成。量子力學給出了一套全新的思維模式和解決問題的方法,它的思維模式跟人們的直覺和常識格格不入,一切不再連續變化,而是以“量子”的模式一份一份的增加或減少。地方高校的學生數學基礎較差,不愿意動手推導,學習興趣較低,量子力學的教學,對學生量子論思維方式的培養就顯得尤為重要。為了完成從經典理論到量子理論思維模式的轉變,概念的思維方式是基礎、是重中之重。通過教師的講解,使學生理解量子力學的思考方式,并把經典物理中機械唯物主義的絕對的觀念和量子力學中的概率的觀念相聯系起來,在生活中能夠利用量子力學的思維方式思考問題,從而達到學以致用的目的。

4.跟蹤科學前沿,隨時更新科研進展。科學是不斷向前發展的,而教材自從編好之后多年不再變化,致使本領域的最新研究成果,不能在教材中得到及時體現。而發生在眼下的事件,最新的東西才是學生感興趣的。因此,我們可以利用學生的這種心理,通過跟蹤科學前沿,及時補充量子力學進展到教學內容中的方式,來提高學習量子力學的興趣。教師利用量子力學基本原理解釋當下最具轟動性的科技新聞,提高量子力學在現實生活中出現的機會,同時引導學生利用基本原理解釋現實問題,從而培養學生理論聯系實際的能力。

三、更新教學手段,提高教學效率

1.拓展手段,量子力學可視化。早在上世紀90年代初,兩位德國人就編制完成了名為IQ的量子力學輔助教學軟件,并在此基礎上出版了《圖解量子力學》。該書采用二維網格圖形和動畫技術,形象地表述量子力學的基本內容,推動了量子力學可視化的前進。近幾年計算機運算速度的迅速提高,將計算物理學方法和動畫技術相結合,再輔以數學工具模擬,應用到量子力學教學的輔助表述上,使量子力學可視化。通過基本概念和原理形象逼真的表述,學生理解起來必將更加輕松,其理解能力也會得到提高。

2.適當引入英語詞匯。在一些漢語解釋不是特別清楚的概念上,可以引入英文的原文,使學生更清晰的理解原理所表述的含義。例如,在講解測不準關系時,初學者往往覺得它很難理解。由于這個原理和已經深入人心經典物理概念格格不入,因此初學者往往缺乏全面、正確的認識。有學生根據漢語的字面意思認為,測量了才有不確定度,不測量就不存在不確定。這時教師引入英文“Uncertainty principle”可使學生通過英文原意“不確定原理”知道,這個原理與“測量”這個動作的實施與否并沒有絕對關系,也就是說并不是測量了力學量之間才有不確定度,不測量就不存在,而是源于量子力學中物質的波粒二象性的基本原理。

3.提出問題,引導學生探究。對于學習能力較強的學生,適當引入思考題,并指導他們解決問題,從而使學生得到基本的科研訓練。比如,在講解氫原子一級斯塔克效應時,提到“通常的外電場強度比起原子內部的電場強度來說是很小的”[2]。這時引入思考題:當氫原子能級主量子數n增大時,微擾論是否還適用?在哪種情況下可以使用,精確度為多少?當確定精度要求后,微擾論在討論較高激發態時,這個n能達到多少?學生通過對問題的主動探索解決,將進一步熟悉微擾論這個近似方法的基本過程,理解這種近似方法的精神。這樣不僅可以加深學生對知識點的理解,還可以得到基本的科研訓練,從而引導學生走上科研的道路。

4.師生全面溝通,及時教學反饋。教學反饋是教學系統有效運行的關鍵環節,它對教和學雙方都具有激發新動機的作用。比如:通過課堂提問及觀察學生表情變化的方式老師能夠及時掌握學生是否理解教師所講的內容,若不清楚可以當堂糾正。由此建立起良好的師生互動,改變單純的灌輸式教學,在動態交流中建立良好的教學模式,及時調整自己的教學行為。利用好課程結束前5分鐘,進行本次課程主要內容的回顧,及時反饋總結。通過及時批改課后作業,了解整個班級相關知識及解題方法的掌握情況。依據反饋信息,對后續課程進行修訂。

通過雙方的反饋信息,教師可以根據學生學習中的反饋信息分析、判定學生學習的效果,學生也可以根據教師的反饋,分析自己的學習效率,檢測自己的學習態度、水平和效果。同時,學生學習行為活動和結果的反饋是教師自我調控和對整個教學過程進行有效調控的依據[6]。

四、結論

量子力學作為傳統的“難課”,一直是學生感到學起來很困難的課程。特別是高校大擴招的背景下,很多二本高校都面臨著招生生源質量下降、學生學習意愿不高的現狀,造成了教師教學難度進一步增大。要增強學生的學習興趣,提高教學質量,教師不僅要遵循高等教育的教學規律,不斷加強自身的學術水平,講課技能,適時調整教學內容,采取與之相對應的教學手段,還需要做好教學反饋,加強與學生的溝通交流,了解學生的真實想法,并有針對性的引入與生活、現實相關的事例,提高學生學習量子力學的興趣。

參考文獻:

[1]曾謹言.量子力學教學與創新人才培養[J].物理,2000,(29):436.

[2]周世勛,陳灝.量子力學教程[M].高等教育出版社,2009:101.

[3]楊林.氫原子電子概率分布可視化及其性質研究[J].綏化學院學報,2009,(29):186.

[4]常少梅.利用Mathematica研究量子力學中氫原子問題[J].科技信息,2011,(26):012.

[5]喻力華,劉書龍,陳昌勝,項林川.氫原子電子云的三維空間可視化[J].物理通報,2011,(3):9.

量子力學在化學中的應用范文第3篇

關鍵詞:多媒體;量子力學;教學效率

一、前言

《量子力學》課程是物理學科的一門重要的基礎課。量子力學是研究微觀粒子的運動規律的物理學分支學科,它主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論,它與相對論一起構成了現代物理學的理論基礎。量子力學不僅是近代物理學的基礎理論之一,還在化學等相關學科和許多近代技術中得到了廣泛的應用。

由于《量子力學》課程的重要性,其相關的教學得到了相當的重視,通常每周是4個學時的課程量。眾所周知,《量子力學》是一門既難學又難教的課程,一是因為其中涉及的概念和我們日常生活(或者說常識)相距甚遠,二是所學習的數學課程比較多,主要有高等數學、數學物理方法、線性代數等,幾乎包括了物理專業學生所學過的全部數學課程。概念抽象,遠離日常經驗,計算復雜,使《量子力學》成為一門難學難教的課程。

隨著電氣化教學的發展,現在有越來越多的課程開始使用多媒體教學,并且取得了一定的成效,當然同時也顯露了一些問題。本文擬對《量子力學》課程中使用多媒體教學的優缺點進行分析,并就如何在傳統板書教學和多媒體教學之間達到最好的效果給出一些建議。

二、在《量子力學》課程中使用多媒體教學的利弊

眾所周知,多媒體教學是教學手段創新的重要內容之一。多媒體教學是現代科學技術在教育工作中的運用,即應用先進的技術手段,把錄音機、電視機、錄像機、視頻展示臺、投影機、多媒體計算機等引進課堂,將通訊技術、網絡技術、電子郵件、衛星遠程通訊、傳真通訊、虛擬現實等新的教育媒體逐步運用于教學,充分發揮其優勢,增加教學的密度,調動學生的學習積極性。其主要的優點有:

(1)有利于提高課堂教學效率。傳統的課堂教學,教師展示知識的空間只是一塊容量有限的黑板,教學時間有限,教師不得不將很大一部分精力放在板演文字、繪畫等低效的勞動上。這樣的課堂教學往往呆板、僵化,缺乏生機與活力,效率不高。運用多媒體教學,可以將大量的教學信息預置在計算機內,隨時調用,任意切換,將相關的圖形、圖像,生動、直觀地投影到屏幕上,學生可從視覺、聽覺等多方面感受知識,加深對教學內容的理解。

在《量子力學》課程中,如對于氫原子各級波函數,就可以直接使用圖像形象地表示出來,可以給學生以強烈的印象,使物理結果更易于理解,同時也容易激起學生的學習熱情。若使用傳統板書手工繪制電子云圖,一則手工畫圖速度慢,二則不很準確,直接影響教學效率。有的Flash格式的課件,可以通過輸入和調整主量子數、角量子數、磁量子數,即時把原子軌道輪廓圖和徑向分布圖表示出來,用色鮮艷,對比強烈,給人以深刻的印象,這樣效果是很明顯的。

(2)能夠激發學生的學習熱情。多媒體技術因其圖文并茂、聲像俱佳的表現形式和跨越時空的非凡表現力,大大增強了學生對事物與過程的理解與感受,體現了極強的直觀性,能夠全方位、多角度、多層次地調動學生的情緒、注意力和興趣,使學生能夠主動地學習。

在《量子力學》課程中,比如在緒論部分,可適當地介紹一下在量子力學發展史上一些著名科學家的簡歷,如普朗克、愛因斯坦、玻爾、泡利、海森堡、費曼等,使用多媒體可通過文字、音像資料充分表現,這可以活躍課堂氣氛,有助于促進學生對科學的熱愛,包括對《量子力學》課程的興趣。

(3)多媒體教學可以拓展教學時空。學生也可以通過拷貝電子教案和網上閱讀電子教案進行課后復習,逐漸改變學生過于依賴課堂、過于依賴教師的傳統教學模式,加強學生獲取知識的能力,有助于創新人才的培養和學生個性的發展。事實上,我們可從網絡上看到許多名師的教學課件,通過對課件的學習,無論對于學生還是教師都是有益的。這不論對《量子力學》課程還是其他課程都是一樣的。

(4)動態交互性強。人機交互、立即反饋是多媒體技術的顯著特點,也是任何其他媒體所沒有的。在這種交互式學習環境中,教師通過創設形象直觀、生動活潑的交互式教學情境,為學生提供更多的參與機會。教師與學生的交流、學生與學生交流、人機交流的良性互動,能激發學生的學習興趣及參與意識,可以充分發揮學生的主觀能動性,使學習更為主動,從而有利于學生形成新的認知結構。

(5)理論聯系實踐的功能大大增強。運用多媒體技術可以采用虛擬實驗實現對普通實驗的擴充,甚至現實環境很難實現或無法實現的實驗項目,可以用圖形、圖像等多媒體形式,模擬實驗全過程。借助有關的教學軟件,通過對真實情景的再現和模擬,學生可以隨時在電腦上“重溫”實驗過程。

在《量子力學》課程中涉及的實驗不多,主要有黑體輻射、電子衍射實驗、Stern-Gelach實驗等。在展現實驗過程和結果時,多媒體可發揮其優越性。如電子衍射實驗,通過減弱電子流強度使粒子一個一個地被衍射,粒子一個個隨機的被打到屏幕各處,顯示粒子性,但經過足夠長的時間,所得衍射圖樣和大量電子同時衍射所得圖樣一樣,從而引出波函數的統計詮釋。使用多媒體動畫,我們可形象地展現電子一個一個打到屏幕上最后得到衍射圖樣的過程。這是在黑板上自己手工畫圖的效果所不能比擬的。

以上我們討論了使用多媒體教學體現出的優越性。開展多媒體教學時一定要處理好內容與形式的關系。形式為內容服務,這是教學的一個基本原則,多媒體教學也不例外。教學體現的是教師和學生之間的一個溝通過程,在此過程中,如何恰當地使用多媒體技術應引起我們的注意。如果我們仔細分析,可以發現在多媒體教學中,特別是在《量子力學》教學中同樣存在著較多的問題,值得引起我們的注意。

(1)忽視雙向交流。在多媒體教學中,如果不注意的話,教師可能會較多的注意桌面點擊,表演課件,而在一定的程度上忽視和學生的雙向交流。不過相對來說,這一點只要講課老師適當注意,就能夠減小這方面的不利影響。

(2)數學推導的欠缺。

在《量子力學》課程中,由于涉及到的數學計算較多,在講課過程中無法避免地會出現較多的數學推導。面對整個多媒體中大片的公式,學生很容易感到疲倦,甚至失去興趣,從而使教學效果大打折扣。

從某種意義上來說,如果學了一門理論物理的課,學生卻不能夠把公式推導出來,就教學效果而言,是一個很大的遺憾。使用板書可讓學生真實地看到教師如何把結論一步一步地推導出來,與使用多媒體相比,學生更容易掌握板書的推導,且學生本身的數學推導能力也能較快地提高。甚至教師在推導過程中偶然的失誤也會促進學生的了解,至少可以讓學生知道哪些地方如果不注意的話可能會弄錯。

不過,過于復雜且教學大綱又不作要求的數學推導可以通過多媒體進行,一是讓學生看到了結論是如何出來的,二又避免了把過多的時間投入于此,畢竟課堂時間是有限的。比如一維諧振子波函數,氫原子角向波和徑向波函數。在教科書上,對氫原子角向波函數,常常直接說在《數學物理方法》課程中已經得到解,為球諧函數,然后就直接給出了結論,由于課時的原因,不可能對此進行詳細的闡述。事實上學生有可能已經遺忘了相關內容,因此相應的復習還是必要的。通過多媒體簡略地展示下相關推導過程可能是一個比較好的選擇。

三、結論

前面我們分別討論了在《量子力學》課程中使用多媒體教學中存在著的優缺點。為了有效提高教學效果,筆者認為應當綜合的使用傳統板書教學和多媒體教學,在講授基本概念和有較多的圖表時,可多使用多媒體教學,但應適當使用,而在講數學推導時仍應使用傳統板書,少用甚至不使用多媒體。

參考文獻

[1]韓芳.多媒體教學存在問題及對策分析[J].重慶工學院學報,2004,(18):143.

[2]唐利軍.多媒體教學的思考[J].吉林廣播大學學報,2005,(69):1.

量子力學在化學中的應用范文第4篇

化學的學科發展,可以提到許多方面,如飛秒化學。化學向生物學和醫學、材料設計、能源、大氣和環境化學、國家安全與個人安全等領域的拓展等。在本文中,要著重說的是:化學與化學工程的重新融合。

20世紀初,化學工程從應用化學中脫胎而出,經歷了單元操作和三傳一反,形成了化學工程學,從以經驗為主過渡到有一定預測功能的較完整的理論,從而導致化學與化學工程的分離。這種情況在20世紀90年生了變化,基礎化學研究與化學工程之間發生了空前的交疊和滲透。化學家越來越多地介入復雜系統的構造、分析和使用中,這些自然而然與工程學中的系統方法有關。化學工程師正日益進入越來越多的化學基礎領域,在一些情況下甚至處于領導地位。在2003年美國出版的《超越分子前沿――化學與化學工程面臨的挑戰》一書中,開始使用化學科學來代表所有化學家和化學工程師的工作范圍。

化學是一個多尺度的科學。微觀尺度是從電子和原子核到分子,例如分子設計。宏觀尺度,例如實驗室合成、生產裝置、化學和物理操作、產品包裝和運輸。現在大家更關注介觀尺度。從化學方面來說,人們關注超越分子的層次,進入超分子、分子集團、大分子、活性中心、器件的作用域,可以說從微觀跨越到介觀以至宏觀層次。從化學工程來說。人們也不再滿足于宏觀的三傳一反,而是逐步深入到顆粒、液滴、氣泡、微孔、界面等介觀行為,并對微觀的機理也表現了濃厚的興趣。化學由底向上,化學工程由頂向下,在介觀層次相遇,互相借鑒,對于化學科學及其理論的發展,形成了巨大的推動。

二、介觀尺度的研究

通常化學以量子力學或量子化學為理論基礎,用以研究物質的微觀結構、化學鍵和對稱等,現在正逐步重視隨時間發展的動態演變。在唯象地說明宏觀現象時,則應用熱力學。進入介觀層次后,要采用平衡態和非平衡態的統計力學,后者需要綜合應用流體力學的原理。

化學工程通常以流體力學和熱力學為理論基礎,特別重視湍流理論、多相流和不可逆過程的熱力學。計算流體力學有很大的發展。在研究湍流的強相關機理以及涉及介觀層次時,統計力學原理起著重要的作用。而在為特征參數找出規律時,則需要量子力學的幫助。

化學科學理論的發展,進入到綜合運用量子力學、統計力學、熱力學和流體力學的時代,目標是解決多尺度時空結構與宏觀平衡和速率的關系。

進行多尺度時空結構研究,有兩個重要方面:一是由下向上的預測。從分子結構逐級預測介觀層次的各種結構及其隨時間的演變,并進而預測宏觀層次的結構、反應和分離的特性,以至在反應器和分離裝置中的行為,目標是形成無縫的從微觀到宏觀的鏈接。要做到這一點,先要搞清楚各個相鄰層次的時空結構是如何相互關聯的。研究這種關聯,首先要有實驗的觀察,總結經驗的規律,然后是理論的建立和推導,作為過渡步驟,也常常是采用模型的半經驗方法。二是由上向下的控制。用宏觀的手段,逐級控制各級時空結構的形成。這兩個方面有著緊密的聯系,有相輔相成的關系。

三、對化學教學的啟示

為了適應不斷變化的新形勢,化學教學要做好以下幾點:

第一要打好基礎。最重要的是,對于本學科的框架結構,通過教學,應使學生有一個系統的完整的初步認識。新的現象、規律和方法不斷出現,要善于在學科的框架結構中找到它的位置。

對于物理化學,我們認識到的學科框架包括:

兩大類研究對象:平衡和速率。

三個層次:宏觀層次,由微觀到宏觀的過渡層次,微觀層次。

兩個方面:普遍規律和物質特性。兩者結合,可以解決實際問題。

三種方法:研究物質特性,有實驗方法、半經驗方法和理論方法。從理論上研究物質特性,將進入下一個更深的層次。

例如生物膜中的促進傳遞和耦合傳遞。屬于宏觀層次的速率過程,具體來說是界面中的速率過程。對于普遍規律,要學教材中“傳遞過程”的內容(當然還有些特殊的地方)。為得到某一個生物膜的傳遞特性,要采用實驗測定,或半經驗方法。而要從理論上得到這種特性,必須應用統計力學。

又如耗散顆粒動態學DPD,它是一種介觀層次的模擬,實質上它就是分子動態學模擬MD,屬于從微觀到宏觀的過渡層次的普遍規律范疇。特殊之處是應用了粗粒化,引入更低的介觀層次,相應還采用了耗散力和隨機力。

第二要強調開放。框架是開放的,可以不斷更新和充實。內容是開放的,可以經常介紹新的進展。

對于如此豐富的介觀層次,上述框架的精神依舊。微觀和宏觀之間,可以加入各種由低到高的介觀層次之間的過渡層次。研究某一介觀層次的特性,仍然有實驗、半經驗、理論這三種方法。理論方法主要采用平衡態和非平衡態的統計力學,相應進入了下一個層次,即從更低的介觀層次到該介觀層次的過渡層次。

第三要善用類比。類比永遠不會完美,卻幾乎常常有用。物理學是一個由于類比而興旺的領域,例如,基于借自超導的概念,我們可以至少部分理解超流的氦。物理化學中類比于由理想氣體到實際氣體,在研究混合物時,我們由理想混合物到實際混合物。

上面提到的耦合傳遞,可以和耦合反應進行類比。又如密度泛函理論DFT,則是以密度分布p(r)代替傳統的位能函數ε(r)為基本變量構筑泛函。變分原理則等價于最概然分布原理或熵最大原理。

當前的薄弱環節是:從微觀到宏觀的過渡層次;傳遞速率;進展。

要加強教學資源建設,包括教材、系列參考書、電子教材、網站建設等。

四、教學方法

量子力學在化學中的應用范文第5篇

一、物理化學課程在課程體系中的地位

物理化學在兩階段工科化學(化工類)課程體系中處于樞紐地位。第一階段由化學原理(基礎物理化學)、無機化學、有機化學、分析化學等課程組成。化學原理作為理論教學內容,在對中學化學知識總結提煉上升到理性認識高度的基礎上,對后繼無機化學、有機化學作為應用教學內容提供理論基礎。第二階段由物理化學加后繼專業或專業基礎課程、選修課程組成。物理化學作為理論教學內容,既將先前所學無機化學、有機化學等知識從理性上加以認識提高,又為后繼課程提供理論基礎。[2]在專業教育的范疇內,物理化學是工科,尤其是化工、冶金、輕工等各專業必備的化學理論基礎,它銜接基礎理論和相關的專業課程,是一門專業基礎課程。

二、物理化學課程的教學內容

物理化學提供應用于所有化學以及相關領域的基本概念和原理,嚴格和詳細地闡釋化學中普適的核心概念,以數學模型提供定量的預測。因此,物理化學是分析化學、無機化學、有機化學和生物化學課程,以及其他相關前沿課題的概念的理論基礎。總體而言,物理化學理論課程可能涉及的教學內容如下:[3]

1.熱力學與平衡

標準熱力學函數(焓、熵、吉氏函數等)及其應用。熵的微觀解釋。化學勢在化學和相平衡中的應用。非理想系統、標準狀態、活度、德拜-休克爾極限公式。吉布斯相律、相平衡、相圖。電化學池的熱力學。

2.氣體分子運動學說

麥克斯韋-玻耳茲曼分布。碰撞頻率、隙流速度。能量均分定律、熱容。傳遞過程、擴散系數、黏度。

3.化學動力學

反應速率的微分和積分表達式。弛豫過程。微觀可逆性。反應機理與速率方程。穩定態近似。碰撞理論、絕對速率理論、過渡狀態理論。同位素效應。分子反應動力學含分子束、反應軌跡和激光。

4.量子力學

薛定諤方程的假定和導出。算符和矩陣元素。勢箱中的粒子。簡諧振子。剛性轉子、角動量。氫原子、類氫離子波函數。自旋、保里原理。近似方法。氦原子。氫分子離子、氫分子、雙原子分子。LCAO方法。計算化學。量子化學應用。

5.光譜

光-物質相互作用、偶極選律。線型分子的轉動光譜。振動光譜。光譜項。原子和分子的電子光譜。磁共振譜。拉曼光譜、多光子選律。激光。

6.統計熱力學

系綜。配分函數表示的標準熱力學函數。原子、剛性轉子、諧振子的配分函數。愛因斯坦晶體、德拜晶體。

7.跨學科的應用

生物物理化學、材料化學、環境化學、藥學、大氣化學等。物理化學實驗課程培養學生用物理化學原理聯系定量模型與觀察到的化學現象的能力,深化學生對模型定性假設和局限的理解,鍛煉他們采用模型定量預測化學現象的基本技能。

學生應能記錄正確的測量值,估算原始數據的誤差。學生需要理解電子儀器的原理和使用方法,操作現代儀器測量物理性質和化學變化,積累用這些儀器解決實驗問題的經驗。物理化學實驗應含有結合若干實驗方法和理論概念的綜合實驗教學內容。適用于工科化學(化工類)課程體系的物理化學實驗教學內容大體如下:

1.熱化學實驗

計算機聯用測定無機鹽溶解熱。計算機聯用測定有機物燃燒熱。溫度滴定法測定弱酸離解熱。差熱分析。

2.相平衡化學平衡實驗

不同外壓下液體沸點的測定。環己烷-乙醇恒壓氣液平衡相圖繪制。液-固平衡相圖繪制。凝固點下降法測定物質摩爾質量。沸點升高法測定物質摩爾質量。熱重分析。氨基甲酸銨分解平衡常數的測定。

3.表面化學實驗

溶液表面張力測定。沉降法測定粒度分布。BET容量法測定固體比表面積。

4.化學動力學實驗

量氣法測定過氧化氫催化分解反應速率系數。蔗糖轉化反應速率系數測定。酯皂化反應動力學。一氧化碳催化氧化反應動力學。甲酸液相氧化反應動力學方程式的建立。可燃氣-氧氣-氮氣三元系爆炸極限的測定。計算機聯用研究BZ化學振蕩反應。

5.電化學實驗

強電解質溶液無限稀釋摩爾電導的測定。離子遷移數測定。原電池反應電動勢及其溫度系數的測定。金屬鈍化曲線測定。

6.結構化學實驗

磁化率測定。分子介電常數和偶極矩的測定。

三、面向專業的物理化學教學內容建設

當然,一個工科類專業的物理化學教學不可能也不必要包含上列的所有內容。因此,各學科專業教學指導委員會根據專業的培養目標和規格,在已經或即將公布的各學科專業的指導性專業規范中,制訂了包括物理化學在內的化學課程教學基本內容作為最低要求。如化學工程與工藝專業的規范(研究型)中規定:物理化學可分為兩部分,物理化學(I)主要內容為化學熱力學和反應動力學等,作為化工主干課的基礎,應注意與化工熱力學課程和化學反應工程課程的銜接和分界(一些內容可在化工熱力學課程和化學反應工程課程中展開,以加強工程背景);物理化學(II)主要內容為溶液理論、統計力學、量子力學等方面的概要以及近展等。各專業的物理化學教學基本內容充分體現了本專業的學科特點,是在保障人才培養質量的前提下,兼顧國內各相關學校的教學條件提出的基本要求。因此,它體現的是該專業人才的知識體系的共性。由于各校的學科背景和教學條件的優勢不同,要培養具有特色的專業人才,需要在教學中研究如何在滿足各專業的教學基本內容要求的基礎上開展物理化學教學。我們認為在教學內容建設中應堅持貫徹下列原則,才能切實發揮物理化學這一門專業基礎課程的作用。[4]

1.承前啟后,發揮樞紐作用。了解授課對象的先修和后繼課程與物理化學的聯系,深化化學原理課程中的物理化學理論,介紹其在后繼專業課程中的應用,以開闊視野并兼顧系統性和趣味性。

2.少而精和博而通。傳統的基礎內容要突出重點,講深講透,體現學科框架;選擇介紹相關前沿的內容以擴大知識面。

3.提倡內容側重的多樣化。針對不同專業時要不拘一格,倡導內容側重的多樣化;即便面對同一專業,內容側重亦應有寬松的選擇余地。

4.體現工科特色,強調應用性和實踐性。引入研究型實踐項目,使學生加深對理論的理解,提高應用水平。

四、建設物理化學教學內容的措施

華東理工大學物理化學教研室在國家精品課程和國家級教學團隊建設過程中,以提高專業人才的教育質量為目標,采取了一系列措施,提高物理化學課程的教學水平和質量,促進相關專業的課程體系建設。

1.根據授課專業的先修、后繼課程,研讀相關教材,如化學工程與工藝專業的現代基礎化學、化工熱力學、化工原理、化學反應工程、化工過程分析與合成教材,了解其改革動向和內容變革,并且請有關學科的學術帶頭人做物理化學在學科領域應用介紹的報告,提出教學內容改革建議。這樣做的結果一方面可以避免教學內容上不必要的重復,另一方面可以合理地選擇教學內容側重,實現化學基礎課程與專業課程的合理銜接。

2.編寫教材和教學參考書,保障教學基本內容的教學質量,介紹物理化學學科發展、在交叉領域的應用;介紹溶液模型、線性自由能關系等半經驗方法,以銜接后繼課程。近年來編寫或修訂出版了《物理化學參考》、《物理化學》(第五版)、《物理化學導讀》、《物理化學釋疑》、《物理化學教學與學習指南》。開展教學研討,提高教師隊伍的學識水平和在教學中貫徹少而精、博而通教學思想的能力。

3.制作相關前沿課題和理論應用實例,如“正、負離子混合表面活性劑雙水相系統及其微觀結構”、“溫室氣體CO2的捕集和封存(CCS)技術”、“復雜材料的微相平衡和結構演化的數學模擬”、“離子液體的合成、性質和應用”等教學素材,進行教學資源的儲備。

4.由科學研究項目提煉研究型教學實驗,如“界面上聚乳酸PLA膜的結構特性研究”、“生物柴油中脂肪酸甲酯的GC-MS測定”、“MCM-41介孔氧化硅材料的合成和表征”等;形成各類研究性課題,如“生物柴油的制備及性能檢測”、“Gem-ini表面活性劑連接基團對合成硅基介孔材料結構的影響”等。

主站蜘蛛池模板: 怀宁县| 遂川县| 丽江市| 项城市| 裕民县| 阜平县| 昌宁县| 自贡市| 青阳县| 石台县| 河东区| 竹北市| 新竹县| 富顺县| 盱眙县| 石楼县| 阿克陶县| 阜新| 同德县| 綦江县| 峡江县| 彰化县| 巩义市| 齐齐哈尔市| 梅州市| 胶南市| 苏尼特左旗| 黎城县| 永胜县| 沁源县| 象州县| 遂昌县| 伊宁市| 孝感市| 黎城县| 钟祥市| 工布江达县| 遵义市| 乌拉特前旗| 龙陵县| 井陉县|