前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇仿真技術論文范文,相信會為您的寫作帶來幫助,發現更多的寫作思路和靈感。
伴隨著科學技術與現代教育技術的發展,各種先進技術被廣泛運用到教學領域中,仿真技術作為一種新興的技術,同樣也被運用到電子專業的教學當中,且對促進教學質量與效率的提升,起到了舉足輕重的作用。以下筆者以“放大電路”的學習為例,對仿真技術在電子專業教學中的應用進行探討。在模擬電路中,放大電路是一個極為關鍵的構成部分,其中最為基本的電路形式就是共射極放大電路。因此,在放大電路教學過程中,首先應當利用多媒體課件對相關的知識點進行說明,例如信號放大的基本概念、共射極電路的構成、各個組成部分的作用、放大電路的動靜態特性等。
在對問題進行設計時,可以設計以下問題:怎樣在放大電路輸入端添加正弦信號?輸出信號是否會出現變化?電壓放大倍數與什么因素相關?倘若對電路的偏置予以調整,那么輸出信號又將發生怎樣的改變?之后通過Multisim軟件建立共射極電路,然后再展開以下仿真實驗。共射極放大電路圖如圖1所示。將Simulate菜單內的Anslysis下的DCOperatingPoint命令打開,進而得到靜態的參數:VB=1.82V,VC=4.84V,VE=1.20V。將正弦電壓信號(幅值是5mV)添加在輸入端,進而對處于空載狀態與接10kΩ負載下的放大電路的輸出電壓波形予以測定,進而得出參數值分別是1.2V、753.7mV,具體如圖2所示。對輸入信號的幅值予以改變,輸入電壓增加到15mV,而在此時輸出電壓波形如圖3(1)所示。對偏置電阻予以改變,把電阻Rb1增加至25kΩ,最終所得到的電壓波如下圖3(2)所示。通過對上述仿真結果的總結與分析,可以得出以下五點結論:第一,當輸出電壓大于輸入電壓幅值時,電路具備電壓放大的功能;第二,當輸入電壓和輸出電壓在相位上相差180º時,共射極電路具備反相功能;第三,在輸入信號較大,且輸出信號正負半周不對稱時,將會出現失真的現象;第四,放大電路當中的放大倍數和負載有一定的聯系,其中當負載小時,放大電路的放大倍數就小,反之,負載大,放大倍數也大;第五,當偏置電阻Rb1增加至一定值時,輸出電壓波形的負半周會發生失真的現象。
二、仿真技術在教學中的優勢及注意事項
在中職電子專業教學中應用仿真技術,具有一定的優越性。一是應用范疇比較廣,且有極強的拓展性。仿真教學能夠提供多種多樣的實驗教學程序與實驗電路板,能夠廣泛運用于各種電子課程,例如模擬電子技術、電子測量技術等。二是有比較高的效率。仿真技術能夠提供各種信號源、數字存儲示波器等虛擬儀器,能夠進行數據的采集與處理,展開溫度檢測控制,以及進行電路設計實驗等。三是有較強的趣味性。在教學過程中進行仿真教學,能夠極大地激發學生學習的興趣與熱情,將全部的精力都投入到教學活動中。此外,仿真實驗的成本較低,可以隨時展開仿真教學。
關鍵詞:數字濾波器MATLABFIRIIR
引言:
在電力系統微機保護和二次控制中,很多信號的處理與分析都是基于對正弦基波和某些整次諧波的分析,而系統電壓電流信號(尤其是故障瞬變過程)中混有各種復雜成分,所以濾波器一直是電力系統二次裝置的關鍵部件【1】。目前微機保護和二次信號處理軟件主要采用數字濾波器。傳統的數字濾波器設計使用繁瑣的公式計算,改變參數后需要重新計算,在設計濾波器尤其是高階濾波器時工作量很大。利用MATLAB信號處理工具箱(SignalProcessingToolbox)可以快速有效的實現數字濾波器的設計與仿真。
1數字濾波器及傳統設計方法
數字濾波器可以理解為是一個計算程序或算法,將代表輸入信號的數字時間序列轉化為代表輸出信號的數字時間序列,并在轉化過程中,使信號按預定的形式變化。數字濾波器有多種分類,根據數字濾波器沖激響應的時域特征,可將數字濾波器分為兩種,即無限長沖激響應(IIR)濾波器和有限長沖激響應(FIR)濾波器。
IIR數字濾波器具有無限寬的沖激響應,與模擬濾波器相匹配。所以IIR濾波器的設計可以采取在模擬濾波器設計的基礎上進一步變換的方法。FIR數字濾波器的單位脈沖響應是有限長序列。它的設計問題實質上是確定能滿足所要求的轉移序列或脈沖響應的常數問題,設計方法主要有窗函數法、頻率采樣法和等波紋最佳逼近法等。
在對濾波器實際設計時,整個過程的運算量是很大的。例如利用窗函數法【2】設計M階FIR低通濾波器時,首先要根據(1)式計算出理想低通濾波器的單位沖激響應序列,然后根據(2)式計算出M個濾波器系數。當濾波器階數比較高時,計算量比較大,設計過程中改變參數或濾波器類型時都要重新計算。
設計完成后對已設計的濾波器的頻率響應要進行校核,要得到幅頻相頻響應特性,運算量也是很大的。我們平時所要設計的數字濾波器,階數和類型并不一定是完全給定的,很多時候都是要根據設計要求和濾波效果不斷的調整,以達到設計的最優化。在這種情況下,濾波器的設計就要進行大量復雜的運算,單純的靠公式計算和編制簡單的程序很難在短時間內完成設計。利用MATLAB強大的計算功能進行計算機輔助設計,可以快速有效的設計數字濾波器,大大的簡化了計算量,直觀簡便。
2數字濾波器的MATLAB設計
2.1FDATool界面設計
2.1.1FDATool的介紹
FDATool(FilterDesign&AnalysisTool)是MATLAB信號處理工具箱里專用的濾波器設計分析工具,MATLAB6.0以上的版本還專門增加了濾波器設計工具箱(FilterDesignToolbox)。FDATool可以設計幾乎所有的基本的常規濾波器,包括FIR和IIR的各種設計方法。它操作簡單,方便靈活。
FDATool界面總共分兩大部分,一部分是DesignFilter,在界面的下半部,用來設置濾波器的設計參數,另一部分則是特性區,在界面的上半部分,用來顯示濾波器的各種特性。DesignFilter部分主要分為:
FilterType(濾波器類型)選項,包括Lowpass(低通)、Highpass(高通)、Bandpass(帶通)、Bandstop(帶阻)和特殊的FIR濾波器。
DesignMethod(設計方法)選項,包括IIR濾波器的Butterworth(巴特沃思)法、ChebyshevTypeI(切比雪夫I型)法、ChebyshevTypeII(切比雪夫II型)法、Elliptic(橢圓濾波器)法和FIR濾波器的Equiripple法、Least-Squares(最小乘方)法、Window(窗函數)法。
FilterOrder(濾波器階數)選項,定義濾波器的階數,包括SpecifyOrder(指定階數)和MinimumOrder(最小階數)。在SpecifyOrder中填入所要設計的濾波器的階數(N階濾波器,SpecifyOrder=N-1),如果選擇MinimumOrder則MATLAB根據所選擇的濾波器類型自動使用最小階數。
FrenquencySpecifications選項,可以詳細定義頻帶的各參數,包括采樣頻率Fs和頻帶的截止頻率。它的具體選項由FilterType選項和DesignMethod選項決定,例如Bandpass(帶通)濾波器需要定義Fstop1(下阻帶截止頻率)、Fpass1(通帶下限截止頻率)、Fpass2(通帶上限截止頻率)、Fstop2(上阻帶截止頻率),而Lowpass(低通)濾波器只需要定義Fstop1、Fpass1。采用窗函數設計濾波器時,由于過渡帶是由窗函數的類型和階數所決定的,所以只需要定義通帶截止頻率,而不必定義阻帶參數。
MagnitudeSpecifications選項,可以定義幅值衰減的情況。例如設計帶通濾波器時,可以定義Wstop1(頻率Fstop1處的幅值衰減)、Wpass(通帶范圍內的幅值衰減)、Wstop2(頻率Fstop2處的幅值衰減)。當采用窗函數設計時,通帶截止頻率處的幅值衰減固定為6db,所以不必定義。
WindowSpecifications選項,當選取采用窗函數設計時,該選項可定義,它包含了各種窗函數。
2.1.2帶通濾波器設計實例
本文將以一個FIR濾波器的設計為例來說明如何使用MATLAB設計數字濾波器:在小電流接地系統中注入83.3Hz的正弦信號,對其進行跟蹤分析,要求設計一帶通數字濾波器,濾除工頻及整次諧波,以便在非常復雜的信號中分離出該注入信號。參數要求:96階FIR數字濾波器,采樣頻率1000Hz,采用Hamming窗函數設計。
本例中,首先在FilterType中選擇Bandpass(帶通濾波器);在DesignMethod選項中選擇FIRWindow(FIR濾波器窗函數法),接著在WindowSpecifications選項中選取Hamming;指定FilterOrder項中的SpecifyOrder=95;由于采用窗函數法設計,只要給出通帶下限截止頻率Fc1和通帶上限截止頻率Fc2,選取Fc1=70Hz,Fc2=84Hz。設置完以后點擊DesignFilter即可得到所設計的FIR濾波器。通過菜單選項Analysis可以在特性區看到所設計濾波器的幅頻響應、相頻響應、零極點配置和濾波器系數等各種特性。設計完成后將結果保存為1.fda文件。
在設計過程中,可以對比濾波器幅頻相頻特性和設計要求,隨時調整參數和濾波器類型,
以便得到最佳效果。其它類型的FIR濾波器和IIR濾波器也都可以使用FDATool來設計。
Fig.1MagnitudeResponseandPhaseResponseofthefilter
2.2程序設計法
在MATLAB中,對各種濾波器的設計都有相應的計算振幅響應的函數【3】,可以用來做濾波器的程序設計。
上例的帶通濾波器可以用程序設計:
c=95;%定義濾波器階數96階
w1=2*pi*fc1/fs;
w2=2*pi*fc2/fs;%參數轉換,將模擬濾波器的技術指標轉換為數字濾波器的技術指標
window=hamming(c+1);%使用hamming窗函數
h=fir1(c,[w1/piw2/pi],window);%使用標準響應的加窗設計函數fir1
freqz(h,1,512);%數字濾波器頻率響應
在MATLAB環境下運行該程序即可得到濾波器幅頻相頻響應曲線和濾波器系數h。篇幅所限,這里不再將源程序詳細列出。
3Simulink仿真
本文通過調用Simulink中的功能模塊構成數字濾波器的仿真框圖,在仿真過程中,可以雙擊各功能模塊,隨時改變參數,獲得不同狀態下的仿真結果。例如構造以基波為主的原始信號,,通過Simulink環境下的DigitalFilterDesign(數字濾波器設計)模塊導入2.1.2中FDATool所設計的濾波器文件1.fda。仿真圖和濾波效果圖如圖2所示。
可以看到經過離散采樣、數字濾波后分離出了83.3Hz的頻率分量(scope1)。之所以選取上面的疊加信號作為原始信號,是由于在實際工作中是要對已經經過差分濾波的信號進一步做帶通濾波,信號的各分量基本同一致,可以反映實際的情況。本例設計的濾波器已在實際工作中應用,取得了不錯的效果。
4結論
利用MATLAB的強大運算功能,基于MATLAB信號處理工具箱(SignalProcessingToolbox)的數字濾波器設計法可以快速有效的設計由軟件組成的常規數字濾波器,設計方便、快捷,極大的減輕了工作量。在設計過程中可以對比濾波器特性,隨時更改參數,以達到濾波器設計的最優化。利用MATLAB設計數字濾波器在電力系統二次信號處理軟件和微機保護中,有著廣泛的應用前景。
參考文獻
1.陳德樹.計算機繼電保護原理與技術【M】北京:水利電力出版社,1992.
2.蔣志凱.數字濾波與卡爾曼濾波【M】北京:中國科學技術出版社,1993
3.樓順天、李博菡.基于MATLAB的系統分析與設計-信號處理【M】西安:西安電子科技大學出版社,1998.
1征文范圍
1.1CAE當前研究熱點與未來發展趨勢
(1)計算流體力學、結構力學、材料力學、仿生力學、爆破力學等新進展;(2)新材料與新工藝、生物材料、微納米、復合材料的CAE應用技術;(3)高性能計算與CAE;(4)智能化CAD/CAE集成;(5)多學科、多尺度CAE仿真技術;(6)可靠性分析與CAE工程穩健設計;(7)非線性有限元進展及應用;(8)有限元網格自動生成技術.
1.2CAE專項技術應用探討
(1)產品結構強度分析、疲勞壽命分析、振動及噪聲仿真分析、碰撞仿真;(2)機構動力學、多體動力學與控制仿真技術;(3)跌落以及沖擊、多物理場耦合分析;(4)結構輕量化設計與拓撲優化技術;(5)先進材料/結構一體化設計技術.
1.3CAE的平臺技術與應用
(1)虛擬產品開發平臺;(2)分布式仿真平臺技術與協同仿真;(3)產品研發仿真流程和數據管理平臺建設;(4)企業級仿真和多學科聯合仿真.
1.4CAE技術的行業應用與解決方案
(1)CAE在航空、航天、兵器、船舶工業中的應用;(2)CAE在海洋工程、核工業及特種行業的應用;(3)CAE在汽車制造、鐵道機車行業中的應用;(4)CAE在裝備制造及通用機械工業中的應用;(5)CAE在電子、材料、土木工程、生物科技中的應用;(6)CAE技術在國家重大工程與裝備中的應用.
1.5CAE技術的人才培養
(1)社會對仿真分析工程師的需求及要求;(2)高校CAE課程的設置及人才培養模式;(3)社會科技中介及培訓機構的CAE人才培訓項目開發.
2征文要求
(1)圍繞主題內容、充實、數據準確、文字通順,字數在5000字以內,未在正式刊物發表;(2) 會議收錄論文,不收取任何費用,僅供業內人士交流參考;(3)文章的格式編寫要求請訪問.cn或;(4)論文結束頁后另附論文全部作者詳細信息,包括作者職稱、學歷、職務及主要專業方向,聯系方式,并標明按上述5個專題論文應屬的類別;(5)論文請務必在7月10日之前發送到()郵箱里.
3論文評審
組委會將組織專家組對征集的論文進行嚴格評審,根據評審結果向論文作者發出錄取通知和參會通知,并選出優秀論文頒發獲獎證書和獎品,優秀論文將推薦給專業刊物正式發表.
4聯系方式
2012年9月20—21日,Altair 2012 HyperWorks技術大會在上海錦江湯臣洲際大酒店成功舉行.本次大會以“仿真驅動創新,智能引領決策”為主題,共匯聚來自汽車、航空航天、鐵道、重型機械、船舶、電子、建筑等多個行業的400多位嘉賓參會.大會征集到近200篇論文,經過論文評委會評審,最終收錄165篇高質量的技術論文,內容涵蓋前后處理平臺HyperMesh&HyperView,求解器技術RADIOSS,AcuSolve和MotionSolve等,優化技術OptiStruct與HyperStudy,以及制造工藝技術、工業設計和二次開發等,其中,16篇論文被評為優秀論文.
大會由Altair市場總監錢純女士主持,Altair大中國區總經理戚國煥先生致開幕詞.Altair全球CEO James Scapa作開場主題報告,對與會嘉賓長期以來的大力支持表示感謝,同時帶來Altair最新的發展情況及愿景.值得一提的是,James Scapa先生與大家分享了一個特大喜訊:Altair榮獲被譽為軟件行業的奧斯卡獎“Computer Software AMA/Stevie Awards”獎.本次大會作為Altair全球HyperWorks技術大會的重要一站,得到Altair高層的高度重視和鼎力支持:來自Altair總部的多體動力學技術專家Rajiv Rampalli,HyperWorks軟件開發副總裁周明博士,RADIOSS求解器技術專家Lionel Zhang Suo,Altair波音優化技術中心專家Justin Reilly,企業解決方案高級總監Doron Helfman,全球汽車和重型機械行業技術總監Tony Norton,全球航空航天行業技術總監Robert Yancey以及全球高校業務總監Matthias Goelke等多位技術專家和業務總監,帶來Altair最新的技術和行業應用情況.
本次大會還特別邀請上汽集團技術中心湯曉東副總工程師和瑞典Volvo汽車技術中心Harald Hasselblad博士分別作題為“RADIOSS在上汽自主品牌轎車研發中的應用”和“優化技術在Volvo汽車研發前期階段中的應用”的主題演講.
作為Altair主要產品線的按需云計算技術PBS Works和商業分析技術HiQube也在本次大會上重點亮相——Altair分別為其設立技術主題專場,吸引不少相關技術人員參加.
除精彩的主題演講外,在多個技術專場和行業專場中,來自上汽技術中心、泛亞汽車、上海大眾汽車、東風汽車、奇瑞汽車、奧拓立夫、佛吉亞、陜西重汽、安徽合力、南車青島四方機車、青島四方龐巴迪、西飛技術中心、中航直升機研究所、上海飛機設計研究院、中國船艦研究中心、三星電子和南平鋁業等企業以及華南理工大學、湖北汽車工業學院、南京航空航天大學和西北工業大學等院校的代表也作了豐富多彩的演講,展示HyperWorks在他們實際產品研發和科研工作中的應用成果.
在航空航天關鍵CAE技術專題研討中,Altair展示其在鳥撞分析、水上迫降仿真分析、艙門系統結構優化與仿真等技術的強大功能和實際應用成果,以及其在航空航天領域值得信賴的強大解決方案.
同時,Altair戰略合作伙伴HP,Cradle 軟件和Magna等公司也分別到會展示其解決方案,特別是HP在現場展示的一體機使參會嘉賓贊嘆不已.此外,大會還得到多家行業媒體的關注,并對Altair高層領導進行專題采訪.
作為本次技術大會的互動環節,由機械工業出版社出版的《HyperMesh&HyperView應用技巧與高級實例》一書首次亮相,贏得參會嘉賓的高度關注,在搶答贈書環節,全場激情四起,場面頗為壯觀.
【關鍵詞】虛擬仿真;數字電路;課程改革;教學方法
【中圖分類號】G420 【文獻標識碼】B 【論文編號】1009―8097(2010)07―0147―04
一 前言
數字電子技術是計算機及通信類專業的重要的專業基礎課,其中關鍵的環節就是培養學生的實踐能力和解決問題的能力,因此,生動形象的課堂教學和全面的實驗體系對教學效果和知識的應用能力有著非常重要的作用。然而,由于實驗儀器的的老舊,數量有限,使得實驗的開出率以及實驗內容的擴展都受到限制。為順應現代教育的發展,實施的現代化遠程開放教育,將計算機虛擬仿真技術應用于數字電路教學中。其中理論教學結合多種教學方法和現代化的教育技術,將基礎知識和理論形象地表現出來,有助于學生理解。課堂教學和實驗教學都利用計算機虛擬仿真軟件將所學理論聯系實際,并加以應用,在此研究基礎上提出了基于虛擬仿真技術的所有電子技術課程教學的新模式。
二 計算機虛擬仿真技術
虛擬現實(Virtual Reality)技術,簡稱VR,涉及計算機圖形學、人機交互技術、傳感技術、人工智能等多個領域。它由計算機硬件、軟件以及各種傳感器構成的三維信息的人工環境――虛擬環境,可以逼真地模擬現實世界(甚至是不存在的)的事物和環境,人投入到這種環境中,立即有“親臨其境”的感覺,并可親自操作,與虛擬環境進行交互[1]。
計算機虛擬仿真技術,是在多媒體技術、虛擬現實技術與網絡通信技術等信息科技迅猛發展的基礎上,利用計算機技術將仿真技術與虛擬現實技術相結合,是一種更高級的仿真技術。虛擬仿真技術以構建全系統統一的完整的虛擬環境為典型特征,并通過虛擬環境集成與控制為數眾多的實體。實體可以是模擬器,也可以是其他的虛擬仿真系統,更多的是計算機。實體在虛擬仿真軟件所提供構建的環境中相互作用,以表現客觀世界的真實特征。虛擬仿真技術的這種集成化、虛擬化與網絡化的特征,可以滿足現代教育的發展需求[1]。
三 課程教學的若干問題及改革研究
對于理論教學環節,首先是教學內容陳舊。當前大中專院校所用的教材內容都是十幾年前的,即便是近幾年出版的教材,也只是內容的深淺不同,體系結構基本相同。比如教材中主要說明的74LS系列的芯片在目前實際應用中已經被淘汰,真正是學的沒用,用的沒學。現在的學生在學習中,非常關注所學知識的實用性,如果不能學以致用,就影響到學習興趣和學習積極性。因而在課程教學中要及時更新教學內容,講解傳統芯片的同時多介紹一些現在普遍使用的芯片,當然也要根據學生學習程度,最大可能激發學生的興趣[3]。
其次是教學方法。常用的教學方法無非就是這幾種:講授法、討論法、談話法、閱讀指導法。根據課程的特點和教學要求,不能一成不變的套用傳統的教學方法。這些方法對有些課程很有效,但是對計算機課程不一定全部適合,因此需要探索適合本課程需求的新的教學方法。筆者在教學中通常有如下幾種方法:講授法,這是傳統的教學方法,教師口述基本事實、原理和推理過程。部分定理,原理及產品采用講授法。例舉法,就是以典型例題說明某個定理或元件的應用,這是本課程用的最多的一種方法。在數字電路課程中有很多芯片的實際應用,有些是針對某部分內容的很典型的例子,這些例子對于學生理解和掌握此部分知識非常有用。任務驅動法,就是教師布置一些運用某個知識點的題目,要求學生在課堂上有限的時間里做出來,并檢查完成情況。這樣學生對該節課所學知識從理論到應用有了一個全方位的認識,而且對每個知識點掌握得都比較透徹,這是近年來比較流行的一種教學方法,也是計算機專業課程特有的一種教學方法,對提升教學效果有顯著作用。
再次是教學手段,不是單純的使用多媒體課件,而是結合計算機專業特點引入現代化教育技術和手段,很多典型例題用計算機仿真軟件在課堂驗證,讓學生直觀形象地了解電路的工作情況,從而掌握電路或芯片的應用。
對于實驗教學環節,首先是實驗設備簡陋。很多高校數字電路實驗設備包括我校仍然使用老式實驗箱,即由固定數字電路芯片搭建的實驗,學生只能按實驗教材設計的實驗按步驟做固定的實驗,實驗內容都是以芯片講解為主,目的是對芯片功能進行驗證。因此學生把實驗課當完成任務,實驗環節沒有促進教學,相反影響了教學效果。很多新的芯片不能認識和實踐,使得實驗教學方法與實際應用的要求嚴重脫節。其次在實驗教學過程中,由于實驗設備老化,個別元件被損壞或接觸不良,導致學生實驗中,出現一些問題,電路連接完全正確,但是就是得不到正確結果,結果費了很多時間去排除故障,這樣做實驗當然激發不了學生的興趣,相反還會阻礙他們進一步探索。再次,由于實驗條件的限制,實驗項目只能停留在驗證性實驗層次,學生的設計能力和綜合應用能力都得不到提高,利用電子電路的計算機虛擬仿真軟件multisilm10就可以解決這個問題,利用這個軟件可以自行設計集成電路,綜合應用各種芯片,完成所有的數字電路實驗[4]。在教學實施中,根據學生情況分驗證性實驗、設計性實驗和綜合性實驗三個層次完成實驗教學目標。
四 計算機虛擬仿真技術在課程教學中的應用
1 課堂教學中的應用
在課堂講到門電路的工作原理或集成電路的應用時,可以現場用計算機仿真軟件演示電路的工作過程,使學生更好地理解門電路的工作原理和芯片的工作情況。從而掌握電路的應用。這樣,教學過程是由原理到應用,由簡單到復雜,由抽象到現實,循序漸進地完成理論知識的學習。數字電路的基本單元是門電路,那么理解其工作原理非常重要,但是此部分對于大部分同學來說都是難點,如何突破這個難點呢?利用軟件建立仿真電路,真實地展現輸出電壓隨輸入電壓的變化情況,就會獲得很好的效果。下面是利用仿真軟件說明TTL與非門工作原理的課堂實例:
(1) Vi=0V,輸入接低電平。那么Q1導通,Vb1=0.8V,Ib5
(2) Vi=3.6V,輸入高電平。那么Q1的發射極電流從發射極(0.852mA)流入,從集電極流出,Q1的發射極和集電極倒置狀態。Vb1=2.443V,Vb5=0.843V,Vbc1+Vbe2=2.443-0.843=1.6V,導致Q2、Q5導通。由于Vc2=0.886V,Q4、Q5截止。輸出Vo=0.018V。其電路仿真如圖2:
2 實驗教學中的應用
大學生需要有獨立的設計能力和對電子器件的綜合應用能力,這就決定了本課程的實驗體系應該是三個層次,在簡單的驗證性實驗的基礎上必須開設有創造性的設計性實驗和綜合性實驗。然而實驗室有限的數字電路實驗箱只能做幾個簡單的驗證性實驗,無法滿足設計性實驗和綜合性實驗的設備要求。但是,利用電子電路的計算機仿真軟件就可以擴展實驗室,提供所需要的一切電子元件和芯片,搭建任意難度,任意復雜的電路,并驗證其正確性。同時利用仿真軟件的可配置性,配合適當的電路可做出多種不同的應用。在實驗課程中,提前給出了三種實驗的一些題目和內容,要求驗證性實驗必須都完成,設計性實驗可選做一至兩個,綜合性實驗選做一個。下面簡要說明學生利用仿真軟件選做的數字電子鐘邏輯電路的設計實例。
要求用中、小規模集成電路設計一臺能顯示日、時、分秒的數字電子鐘,選用器材主要有:安裝有仿真軟件的計算機若干臺,集成電路(CD4060、74LS74、74LS161、74LS248),晶振、電阻、電容若干,數碼顯示管,三極管、開關若干。
提示設計方案,包括數字電子鐘的電路框圖和四個主要模塊的實現細節,學生依據電路框圖和提示信息設計邏輯電路圖,并將其在虛擬實驗環境中用仿真電路實現。下面給出數字電子鐘的電路框圖。
篇幅所限,參考電路就不給出,但是通過這個實例可以看出虛擬仿真技術在課程實驗中的重要作用。不但節省很多設備購置費用,不受地點和環境的限制,而且和真實實驗具有相同的效果。既然如此,為什么不廣泛應用呢?
五 總結
論文對數字電子技術課程教學提出很多問題,在實際的教學實踐中對這些問題進行了探索,將計算機虛擬仿真技術引入教學中,采用現代化教育手段進行課程改革。課堂教學提出了很多適合本課程并行之有效的教學方法,重要電路工作情況的計算機仿真演示,部分例題的計算機仿真驗證,增強其直觀性和真實性,加強學生的理解。實驗教學也利用計算機仿真軟件,采用虛擬實驗和真實實驗相結合的方式,擴充建立了虛擬實驗室,擴展了實驗內容,在無需花費很大代價的情況下,滿足了設計性實驗和綜合性實驗的條件,從而完成三個層次實驗體系的建設。在本文的研究基礎上,可將虛擬仿真技術推廣應用到所有電子技術課程教學中,引發電子技術課程改革的新局面。
參考文獻
[1] 呂,鄧春健等.利用EDA技術全面改進數字電路課程教學[J].福建電腦,2008,(6).
[2] 劉靜,邊曉娜等.基于EDA平臺的虛擬電子實驗研究與實踐[J].計算機教育,2007,(7).
[3] 黃培根等著.multisim 10 計算機虛擬仿真實驗室[M].北京:電子工業出版社,2008.
[4] 黃荻.融入EDA技術,深入數字電路課程改革[J].中國現代教育裝備,2008,(2).
[5] 江曉安等編著.數字電子技術[M].西安:西安電子科技大學出版社,2002.
[6] 房建東,李巴津等.關于改進電子技術相關課程教學的思考[J].內蒙古工業大學學報(社會科學版),2004,(1).